
R

T
d

J
a

b

c

a

A
R
R
A
A

K
T
R
L
A
R

1

t
a
g
o
a
l
n
o
s
l
p
o
m
t
c
d
o
w

0
d

Behavioural Brain Research 198 (2009) 125–129

Contents lists available at ScienceDirect

Behavioural Brain Research

journa l homepage: www.e lsev ier .com/ locate /bbr

esearch report

heory meets pigeons: The influence of reward-magnitude on
iscrimination-learning

onas Rosea,∗, Robert Schmidtb,c, Marco Grabemanna, Onur Güntürküna

Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, 44780 Bochum, Germany
Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115 Berlin, Germany
Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany

r t i c l e i n f o

rticle history:
eceived 22 August 2008
eceived in revised form 14 October 2008
ccepted 20 October 2008
vailable online 8 November 2008

eywords:

a b s t r a c t

Modern theoretical accounts on reward-based learning are commonly based on reinforcement learning
algorithms. Most noted in this context is the temporal-difference (TD) algorithm in which the difference
between predicted and obtained reward, the prediction-error, serves as a learning signal. Consequently,
larger rewards cause bigger prediction-errors and lead to faster learning than smaller rewards. Therefore,
if animals employ a neural implementation of TD learning, reward-magnitude should affect learning in
animals accordingly.
emporal-difference
einforcer magnitude
earning-rate
nimal behavior
einforcement learning

Here we test this prediction by training pigeons on a simple color-discrimination task with two pairs
of colors. In each pair, correct discrimination is rewarded; in pair one with a large-reward, in pair two
with a small-reward. Pigeons acquired the ‘large-reward’ discrimination faster than the ‘small-reward’
discrimination. Animal behavior and an implementation of the TD-algorithm yielded comparable results
with respect to the difference between learning curves in the large-reward and in the small-reward condi-
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paradigm is accurately refl

. Introduction

Successful behavior depends on establishing reliable predic-
ions about future events. To select appropriate actions, humans
nd other animals need to learn which sensory events predict dan-
ers or benefits and which actions improve or worsen the situation
f the animal. This learning often relies on positive (reward) or neg-
tive feedback (punishment). The neural basis of feedback-based
earning is highly conserved across species and much of the basic
eural organization in different vertebrate species resembles each
ther [38,12]. Countless research has been dedicated to under-
tanding the computational principles mediating feedback-based
earning and numerous models have been devised to describe these
rinciples mathematically [36,8]. Modern, theoretical accounts
n feedback-based learning are mostly centered on reinforce-
ent learning algorithms; the most prominent of these is the

emporal-difference (TD) algorithm [36,37], which has been suc-

essfully used as a model for behavioral and neural responses
uring reward-based learning [21,31]. TD learning is an extension
f the Rescorla–Wagner (or also the Widrow–Hoff) learning rule,
ith a more detailed representation of time [36,37]. We used the TD
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uence of reward-magnitude on the acquisition of a simple discrimination
by a TD implementation of reinforcement learning.

© 2008 Elsevier B.V. All rights reserved.

odel in this study because it is widely used in computational neu-
oscience and because it is well integrated into machine-learning
heory including action selection in decision making.

In TD-algorithms, time is often divided into discrete steps and
or each time step the amount of predicted future reward is deter-

ined on the basis of sensory stimuli. A comparison of predicted
nd obtained reward yields a prediction error signal with three
asic characteristics: (1) an unexpected reward generates a pos-

tive prediction error indicating that more reward was obtained
han was predicted, (2) omission of a predicted reward generates a
egative prediction error indicating that less reward was obtained
han was predicted, and (3) obtaining a fully predicted reward gen-
rates no prediction error. This prediction error signal is in turn
sed to update the reward prediction of sensory stimuli that pre-
eded the reward; a positive prediction error leads to an increase
n reward prediction, a negative prediction error to a decrease in
eward prediction [31,33]. Through these mechanisms TD learning
an be used to associate a stimulus with a reward (as in classical
onditioning) [25], to associate an action with a reward (as in oper-
nt conditioning) [22,1] or also to cause extinction of a previously

ormed association [26].

The TD-algorithm gained popularity, since the activity of
opaminergic neurons located in the ventral tegmentum and
ubstantia nigra pars compacta of mammals resembles the TD pre-
iction error signal. The dopaminergic system is frequently termed

http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:jonas.rose@rub.de
dx.doi.org/10.1016/j.bbr.2008.10.038
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Fig. 1. The behavioral task. (A) Reward-choice trial, the animals learn to associate a
side-key with the corresponding feeder and the corresponding reward-magnitude.
A response on the left key will result in reward-delivery on the left feeder, each
animal has a ‘good’ and a ‘bad’ feeder that will always deliver the large- and small-
rewards, respectively. (B) A color-choice trial with large-reward; choice of the S++
(blue key) results in the large-reward, choice of the S− (yellow key) and response
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he ‘reward-system’ of the brain and numerous theories have been
evised on its exact role in reward. The most prominent theories

nclude reinforcement [35], incentive salience [2] and habit forma-
ion [10]. Despite the discussion on the behavioral role of dopamine,
here is clear evidence that the activity of dopaminergic neurons
ears striking resemblance to the TD error signal. The responses
f dopaminergic neurons show positive and negative prediction
rrors [21,31,25] and comply with several assumptions of learn-
ng theory [40]. One important prediction of the TD-algorithm is
hat the error signal is dependent on the size of the reward; a big
nexpected reward will generate a bigger error signal than a small
nexpected reward. Hence, bigger rewards lead to faster learning
han smaller rewards.

The influence of reward-magnitude on animal behavior has
reviously been investigated with regards to several questions,
or example reward-discriminability [7,14,15,17,24], motivation
4–6,9,19,43] and choice behavior [18]. In addition, it has been
valuated in the light of response-rates during acquisition
4,7,13,20,43], and reversal [19]. However, whether the influence
f reward-magnitude on learning-rate complies with the predic-
ions of the TD-model has not yet directly been investigated.
uch a test requires the use of error-rates instead of measures of
esponse-strength in order to avoid measuring overall differences
n performance due to motivational differences [5,6]. Here we test

hether the acquisition of a color-discrimination is modulated by
he magnitude of contingent reward and relate our findings to an
mplementation of the TD-model.

. Materials and methods

.1. Subjects

Twelve naive homing pigeons (Columba livia) with body weights ranging from
30 g to 490 g served as subjects. The animals were housed individually in wire-mesh
ages inside a colony room, had free access to water and grit and during experiments
hey were maintained on 80% of their free-feeding body weight. The colony room
rovided a 12 h dark–light cycle with lights on at 8:00 and lights off at 20:00. The
xperiment and all experimental procedures were in accordance with the National
nstitute of Health guidelines for the care and use of laboratory animals and were
pproved by a national committee (North Rhine-Westphalia, Germany).

.2. Apparatus and stimuli

All training and testing was conducted in an operant chamber, controlled via PC
nd parallel-port interface by Matlab (the Mathworks Inc.) and the Biopsychology
oolbox [29]. Situated on the front panel of the chamber were four pecking keys,
ransparent, circular switches of 2.5 cm diameter, behind these was a TFT-Monitor
Acer AL1511) used for presentation of the stimuli. Two pecking keys were placed
n the sides, 14 cm above the two feeders; the other keys were placed centrally, one
bove the other (8 cm distance, the lower key 18 cm above the floor). The stimuli
onsisted in a full back-illumination of a given pecking key, either in white or in one
f four basic colors (red, green, blue, yellow). These stimuli were always presented
n the combinations red–green and blue–yellow, one color of each pair serving as
+, the other as S−. For each bird, one combination was paired with the chance of
aining a large-reward, the other with the chance of gaining a small-reward. For
ach animal one feeder gave access to grain for 4.0 s and the other for 1.5 s these
erved as large- and small-rewards, respectively. Mixed grain was used as reward.
ll contingencies (the color of the S+, color-pair and reward-size, reward-size and
ide of the reward) were balanced between the animals.

.3. Behavioral task

The birds were trained on two distinct tasks, on a simple discrimination between
large- and a small-reward and on a simple discrimination of basic colors. During
re-training the animals were trained in an autoshaping procedure to respond to the
ecking keys, thereafter they were trained on an operant conditioning (FR1) sched-
le. The series of events was similar in both paradigms, after an inter-trial interval

f 10 s the left or right pecking key was illuminated in white for 9 s. A peck to the
lluminated key resulted in a reward delivered by the feeder situated below the
ecking key. For each animal, one feeder always delivered the large-reward, giving
ccess to food for 4.0 s, the other always delivered the small-reward, giving access
o food for 1.5 s; the side of the ‘good’ and the ‘bad’ feeder was balanced between
nimals. Omission of a response was rewarded in the autoshaping-trials but mildly

t
c
r
c
t

mission result in a mild punishment. (C) A color-choice trial with small-reward;
hoice of the S+ (green key) results in a small-reward, choice of the S− (red key)
nd response omission result in a mild punishment. All contingencies are balanced
etween the animals.

unished with 10 s lights off in the FR1-trials. When the animals showed stable
ecking-responses, training on the reward-choice commenced (Fig. 1). In these tri-
ls, an inter-trial interval of 10 s was followed by the illumination of both side-keys
n white light. Response to either key was rewarded by the corresponding feeder
elow it. Choice of the side-key thus determined the feeder that delivered a reward
nd consequently the duration of access to food. Omission of a response was mildly
unished with 10 s lights off.

After the criterion, three consecutive days with at least 80 percent choice of the
arge-reward, was reached the animals were trained on the color-discrimination
Fig. 1). In each session, reward-discrimination trials and color-discrimination trials
ere presented in a block-wise fashion (10 trials reward-, 20 trials color-, 10 trials

eward-, 20 trials color-discrimination). Color-discrimination trials were separated
y a 10 s inter-trial interval after which the choice stimuli were presented on the
entral pecking keys. Correct response to S++ resulted in a large-reward, correct
esponse to the S+ in a small-reward. Response to S− and omission of a response
ere mildly punished with 10 s lights off.

.4. Data analysis

Animal behavior was analyzed with respect to differences in learning on the
arge-reward and small-reward conditions. All analysis was performed using the
ercentage of correct trials in a session. Two distinct measures were used: a direct
omparison of the learning curves and the number of sessions required to reach
riterion. The direct comparison was performed using a Wilcoxon signed-rank test.
he other measure, sessions to criterion, was evaluated for a criterion of 75% correct.
paired Student’s t-test was used for significance-testing between the conditions.
The comparison of behavioral and modeling data was performed with respect
o the difference in learning on the large-reward and learning on the small-reward
onditions. For this comparison, the mean performance of all animals for small-
eward and large-reward stimuli was calculated for each day. The small-reward
urve was then subtracted from the corresponding large-reward curve. Performing
his calculation resulted in a difference-curve for the behavioral data and one for the
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odeling data. Correlation coefficients were determined between these curves. This
pproach allowed comparing the influence of reward-magnitude on learning-rates
n the behavioral date with the influence reward-size had in the model.

.5. Modeling

To see whether the behavioral data matches the predictions of canonical models
f animal behavior we implemented a reinforcement learning algorithm. We used
standard actor-critic architecture that employs TD learning.

The critic component learns to predict future rewards on the basis of sensory
timuli. A complete serial compound stimulus representation was chosen in which
he occurrence of a stimulus was represented in a state vector s. Usually, this vector
ontains only zeros, but with stimulus onset the first component is set to ‘1’. With
ach discrete time step this ‘1’ is shifted to the next component such that component
has the value of ‘1’ if the stimulus onset was exactly i − 1 time steps ago. The length
f the vector determines for how long the stimulus onset can be ‘remembered’. The
alue of a stimulus is estimated with the help of weight vector w that has the same
ength as the state vector. The weight vector is modified during learning and is used
t each discrete time step t to form reward predictions P(t) = s(t) · w(t), where ‘·’ is
he dot product.

Changes in the reward prediction in two successive time steps (P(t − 1) − P(t))
rovide an estimate of the reward at time step t, which is r(t). If the estimate is good,
he difference between those two should be zero. If the estimate is bad, the difference
an be either positive or negative and the estimate should be improved. Thus, this
ifference (PE = r(t) − P(t − 1) + P(t)) yields an error in the reward prediction. Com-
only, PE(t) is therefore referred to as prediction error and is used to update the
eight vector to improve future reward predictions. The weight vector is changed

y: �w = ˛PE(t)e(t), where 0 < ˛ ≤ 1 is a learning-rate and e(t) is a so-called eligi-
ility trace. The eligibility trace contains past stimulus representations that are used
or temporal-credit assignment (‘what stimulus in the past might have caused the
urrent reward?’). It can be determined recursively, such that e(t + 1) = �e(t) + s(t).
he parameter 0 ≤ � ≤ 1 determines whether only rather recent (low �) or also more
emote (high �) events are considered responsible for current rewards.

The actor component also uses the prediction error to learn which actions lead
o rewards. Each action a is associated with a scalar weight wa which are updated
imilar to the stimulus weight vectors: �wa(t) = ˇPE(t)ea(t). ˇ is the learning-rate
or action learning and ea(t) is the eligibility trace of each action.

A trial consisted of 15 time steps. The stimulus was presented at time step 5. At
he same time step an action was selected on the basis of the action weights. If the
orrect action was selected a reward was given at time step 10. Big rewards had a
alue of ‘2’, small ones had a value of ‘1’. Between trials a random inter-trial interval
f 20–60 time steps was inserted. Parameter values in the critic were chosen to
atch DA cell activity in a reward-learning task [25]. Actor component parameters
ere chosen to fit the time course of the behavioral data reported here. Parameters

alues were ˛ = 0.005, � = 0.9, ˇ = 0.025, and state and weight vector length was

1.

Action selection was implemented with a Boltzman distribution providing a
robability to choose action a: Pa(t) = exp (�wa(t))/

∑
a′ ∈ A

exp (�wa′ (t)) with an
nverse temperature � = 1 [30,8]. The set of actions A consisted of: peck A, peck B,
r do nothing. Initially, the weights for peck A and peck B were set to zero, while

do nothing’ had a small positive weight (0.2). We simulated 50 experiments with

a

o
a
d

ig. 3. (A) Acquisition of the color-choice task. Pigeons performance on the first 10 day
epicted with a solid line, choice of the S+ over the corresponding S− is depicted with a da
raining-sessions, corresponding to 40 trials, Y-axis: percent correct trials. (B) Modeling o
mean with standard error) of the S++ over the S− is depicted with a solid line, choice of
onsisting of 40 learning trials each, Y-axis: percent correct trials. (For interpretation of th
f the article.)
ig. 2. Preference (mean with standard error) on reward-choice blocks within the
olor-choice training-sessions. All animals choose the large-reward (solid line) reli-
bly over the small-reward (dashed line). X-axis: day of training, Y-axis: percent
hoice of large-reward.

mall and 50 experiments with big rewards, each consisting of 400 trials. Afterwards,
orrect responses were assessed as percentages on the basis of 40 consecutive trials.
ean values and standard errors were determined across experiments with the

ame reward value.

. Results

.1. Behavior

Of the 12 animals in training, ten reached criterion on
he reward-discrimination (three consecutive days over 80%
hoice of the big reward) and went on to be tested on the
olor-discrimination. For these 10 animals, the high level of reward-
iscrimination was maintained throughout all consecutive sessions
Fig. 2). Training of the remaining two animals was discontinued

nd they were omitted from analysis.

All animals learned the color-discrimination task within 10 days
f training, the criterion (75% correct, big- and small-reward tri-
ls combined) was reached after a mean of 4.50 (±1.27 standard
eviation) days. The size of the reward had a decisive influence on

s of training. Percent choice (mean with standard error) of the S++ over the S− is
shed line. The dashed horizontal line represents the criterion of 75% correct. X-axis:
f the color-choice task, depicted are the results of 100 simulations. Percent choice
the S+ over the corresponding S− is depicted with a dashed line. X-axis: sessions,
e references to color in this figure legend, the reader is referred to the web version
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ig. 4. The model accurately reflects the influence of reward-magnitude on learning.
redictions for the small-reward were subtracted from the predictions for the large-
eward. This difference is plotted for the behavioral data (Y-axis) and for the model
ata (X-axis).

earning-rates (Fig. 3a). While acquisition of color-pairs reinforced
y a large-reward took on average 3.40 (±0.97 standard deviation)
ays, acquisition of color-pairs reinforced with a small-reward took
lmost twice as long with 5.9 (±2.33 standard deviation) sessions
f training. This difference is significant (p = 0.0116). In addition to
omparing the number of sessions to criterion, both learning curves
ere compared directly, this difference was found to be signifi-

ant (p = 0.005). Note that this second test includes the initial and
nal training-sessions, in other words those sessions in which the
nimals performed at chance or at maximal performance on both
onditions.

.2. Model

The learning curves of the model resemble the animal behavior
Fig. 3b) with acquisition on the large-reward condition exceed-
ng that on the small-reward condition. To assess if simulated
ata reflects the difference between the conditions adequately
he correlation coefficient between the difference-values for the
ehavioral- and the modeling data was determined (Fig. 4). The
ifferences show a strong linear correlation (r = .8614; p = 0.0014)

ndicating that the model accurately reflects the influence of
eward-magnitude on learning-rate.

. Discussion

The aim of the present study was to test a prediction of
einforcement learning models. These models imply that learning-
ates depend on the magnitude of reward delivered after correct
esponses. To assess this prediction, pigeons were trained on a
olor-discrimination task with different reward-magnitudes. In line
ith reinforcement learning models, a large-reward led to fast

cquisition of the task, whereas a small-reward led to slow acquisi-
ion of the task. As an additional measure, the difference between
he acquisition of large- and acquisition of small-rewards was
alculated and compared between animal behavior and an imple-
entation of reinforcement learning. Behavior and model were

inearly related with respect to this measure. These results imply
hat TD-models of reinforcement learning accurately predict ani-
al behavior with respect to the influence of reward-magnitude
n learning-rates.

We believe that a neural implementation of TD-learning offers
compelling explanation for the observed difference in acquisi-

ion. However, motivational influences offer a potential alternative

r
s
r
t
d

search 198 (2009) 125–129

xplanation. Various studies have shown that during learning,
esponse-rate or running-speed of animals are modulated by the
ize of forthcoming rewards [23,19,13,4,7,20]. These results were
ften interpreted in the light of incentive salience or motivation
2,19]. While we cannot exclude such a motivational interpretation,
e believe that TD-learning offers a more parsimonious account

or our data. First, the TD-model accurately reflects animal behav-
or with respect to the difference between large and small-rewards.
mportantly, it does so as an intrinsic property of TD-models, with-
ut the inclusion of a separate ‘motivational module’. Second,
f motivation differed greatly between the large-reward and the
mall-reward color-pairs the animals’ performance would reflect
his difference also after learning. However, performance reached
symptote on the same level for large- and small-rewards, sug-
esting that there was no overall effect of motivation on animal
erformance. Third, we believe that the paradigm used in the
resent study, forced choice, is far less susceptible to motiva-
ional effects than classical paradigms employing response-rate or
unning-speed in a maze, since these remain sensitive to reward-
agnitude after learning. This was already concluded by Crespi
ho argued that measures of response-strength quantify perfor-
ance and therefore motivation while error-measures can be used

o quantify learning [5,6].
Another line of research on reinforcement magnitude led to the

bservation that such effects are strongly modulated by subjec-
ive experience. Changing the amount of reinforcer received by a
ingle subject for responding, say from a large to a small-reward
ill result in a large deterioration of performance. If, on the other
and, different subjects are reinforced with different amounts of
einforcer the effect will be a lot less pronounced [3,5,6]. In line
ith these results, it has been shown that the responses of sin-

le neurons involved in reward-processing, are not merely tuned
o absolute, physical properties of reinforcement. These neurons
ather respond to subjective value of reward, scaled to other avail-
ble rewards [39]. Consequently, we chose to use a within-subject
esign to induce a subjective difference in the perception of rein-
orcement as is implied in the TD-model.

The neural basis of reward-based learning has been an active
rea of research for several decades. To date there is consensus that
he basal ganglia along with midbrain dopaminergic neurons and
heir thalamo-cortical target areas lie at the heart of reward pro-
essing and of reward-based learning [32,34,41,10,11]. Schultz et al.
eported in 1997 [31] that single dopaminergic neurons in the mid-
rain of primates are activated in accordance with a TD prediction
rror. These results have later been replicated in various studies [35]
nd it is now widely accepted that dopaminergic neurons carry a
rediction error signal [for a different perspective: 2]. This signal
nds one of its uses in the striatum to aid learning related processes.
elease of dopamine in the striatum can be observed after the pre-
entation of a contingent CS, but not after a non-contingent CS [16];
earning-rate can be increased by microstimulation in the dorsal
triatum during the reinforcement-period of a visuo-motor associ-
tion task [42]; during learning, the activation of striatal neurons
recedes that of prefrontal neurons [27]; and dopamine mediates
lasticity in cortico-striatal circuits [28,41].

Tobler et al. [39] showed that the responses of dopaminergic
eurons are sensitive to the magnitude of forthcoming rewards.
hus, at the neural level of dopamine neurons reward-magnitude
s encoded, as required for a neural implementation of reinforce-

ent learning. However, it is unknown how this information about

eward-magnitude is read-out at target structures, such as the
triatum. To effectively modulate learning-rate, striatal dopamine
eceptors should show concentration-specific effects which allow
he manifestation of different learning-rates in the striatum or
ownstream targets. Further studies of different dopamine receptor
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ubtypes might provide interesting insights on their involvement
n reward-magnitude modulated task acquisition.

We believe that the paradigm presented here is a useful tool
o further investigate this issue. In this paradigm, discrimination
f rewards and the influence of reward-magnitude on learning
an be assessed by distinct behavioral measures, the choice of
arge- over small-reward on one hand and the acquisition of the
olor-discrimination on the other hand. This distinction offers the
ossibility to pit the discrimination of different reward-magnitudes
gainst the influence of reward-magnitude on learning-rate. Hence,
t is a tool to investigate the neural structures and pharmacological
ubstrates of a reward modulation of learning.

In the future we hope to elucidate how, in this learning regime,
he contrast between different reward-magnitudes is generated;
s learning to predict large-rewards fostered, learning to predict
mall-rewards hindered or do both mechanisms interact; what is
he role of different dopamine-receptors and of striatal regions
n discriminating reward-magnitudes and learning from different
ewards.
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