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Dopamine Cells Respond to Predicted Events during
Classical Conditioning: Evidence for Eligibility Traces in the
Reward-Learning Network

Wei-Xing Pan,' Robert Schmidt,? Jeffery R. Wickens,? and Brian I. Hyland'
Departments of 'Physiology and 2Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin 9001, New Zealand

Behavioral conditioning of cue-reward pairing results in a shift of midbrain dopamine (DA) cell activity from responding to the reward
to responding to the predictive cue. However, the precise time course and mechanism underlying this shift remain unclear. Here, we
report a combined single-unit recording and temporal difference (TD) modeling approach to this question. The data from recordings in
conscious rats showed that DA cells retain responses to predicted reward after responses to conditioned cues have developed, at least
early in training. This contrasts with previous TD models that predict a gradual stepwise shift in latency with responses to rewards lost
before responses develop to the conditioned cue. By exploring the TD parameter space, we demonstrate that the persistent reward
responses of DA cells during conditioning are only accurately replicated by a TD model with long-lasting eligibility traces (nonzero values
for the parameter A) and low learning rate (). These physiological constraints for TD parameters suggest that eligibility traces and low
per-trial rates of plastic modification may be essential features of neural circuits for reward learning in the brain. Such properties enable
rapid but stable initiation of learning when the number of stimulus-reward pairings is limited, conferring significant adaptive advan-
tages in real-world environments.
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Introduction
Midbrain dopamine (DA) cells play a central role in reward-
mediated learning in animals, and their activity follows classical
learning rules (Schultz, 1998, 2002; Waelti et al., 2001). Further-
more, several features of DA cell activity match properties of the
prediction error signal of the temporal difference (TD) algorithm
for machine learning, leading to the hypothesis that DA cell ac-
tivity may be providing a teaching signal within a neural analog of
aTD learning system in the brain (Houk et al., 1995; Montague et
al., 1996; Schultz et al., 1997; Daw et al., 2003; Nakahara et al.,
2004). Because the underlying algorithmic processes of TD are
well understood (Sutton, 1988; Sutton and Barto, 1998), this link
between biological and machine learning processes offers a pow-
erful way to progress our understanding of the neural mecha-
nisms of reward-mediated learning (Barto, 1995; Houk et al.,
1995; Montague et al., 1996; Schultz et al., 1997; Suri and Schultz,
1998, 1999; Rao and Sejnowski, 2001; O’Doherty et al., 2003,
2004; Seymour et al., 2004).

DA cells show responses to unexpected rewards, but after
training with cue-reward pairings, they respond to the cue more
than to the predicted reward (Ljungbergetal., 1992). A TD mech-

Received April 15, 2005; revised May 13, 2005; accepted May 14, 2005.
This research was supported by grants from the New Zealand Neurological Foundation, New Zealand Lottery
Grants Board, and the Marsden Fund.
Correspondence should be addressed to Dr. Brian Hyland, Department Physiology, Otago School of Medical
Sciences, P.0. Box 913, Dunedin 9001, New Zealand. E-mail: brian.hyland@otago.ac.nz.
DOI:10.1523/JNEUR0SCI.1478-05.2005
Copyright © 2005 Society for Neuroscience  0270-6474/05/256235-08%15.00/0

anism that has been suggested to underlay this process involves a
stepwise shift in the timing of prediction error signal, so that it
drifts gradually in latency until it follows the cue (Montague et al.,
1996; Schultz et al., 1997). Responses of DA cells are therefore
predicted to show similar gradual shifts in timing during the
process of conditioning. Two additional predictions arise from
this proposed mechanism; first, that the response to the reward
will decline to zero before the response to the cue develops, and
second, that an intermediate redundant cue will not trigger a
response during the learning process (Montague et al., 1996;
Schultz et al., 1997). These predictions have not been tested rig-
orously, because few studies have monitored the activity of single
dopamine cells during the acquisition of completely novel learn-
ing. Thus, the specific temporal representation parameters of TD
models remain physiologically under-constrained (Schultz et al.,
1997).

In this study, we first investigated in conscious rats whether
DA cells conform to these specific patterns of prediction error
signaling by recording from single neurons while animals first
learned the association between cues and rewards. The results
were not consistent with previous model predictions. We then
performed a systematic exploration of the parameter space of the
TD algorithm to determine whether it can encompass the activity
patterns displayed by the DA cells.

Materials and Methods
Electrophysiological methods
Animals. All procedures were approved by the University of Otago Ani-
mal Ethics Committee. Fifty-three male, Wistar rats weighing 250400 g
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were used for this study. Under full anesthesia (sodium pentobarbital; 60
mg/kg, i.p.) and using aseptic technique, a bundle of eight microwire
recording electrodes (0.001 inch Formvar-insulated nichrome; A-M Sys-
tems, Carlsborg, WA) glued in a 30 gauge stainless steel guide cannula
and mounted on an on-head microdrive was implanted through a small
burr hole using stereotaxic technique. The electrode tips were left just
above the dopamine cell groups of the substantia nigra pars compacta or
the ventral tegmental area (5.0 5.5 mm posterior to bregma, 0.5-2.0 mm
lateral to midline, and 6.5-7.0 mm below the surface of skull). The elec-
trode assembly was affixed to the skull using six stainless steel screws and
dental acrylic. All animals were allowed 1 week to recover from surgery
before any recordings.

Behavioral testing. After recovery from surgery, rats were fluid de-
prived for 24 h and then familiarized with the recording chamber, a clear
acrylic box of floor area 25 X 16.5 cm located in a quiet, darkened room.
The rats were trained to obtain fluid from a recessed spout in the wall of
the chamber. Small volumes (~0.05 ml) of water sweetened with saccha-
rin (0.005 M solution) were delivered to the spout by briefly releasing a
solenoid valve (Med Associates, Georgia, VT). The moment of fluid de-
livery was indicated by a low-frequency click generated by the solenoid.
Licking at the spout was detected by the tongue breaking an infrared
beam across the spout opening. Initially, the solenoid was manually ac-
tivated whenever rats spontaneously explored the drinking spout, which
usually resulted in extended attention to the spout after only a few min-
utes in the first session. They were then exposed to an automated
random-reward paradigm. In this condition, fluid boluses were delivered
at pseudorandom delays (10-20 s) after retrieval of the previous bolus
(indicated by detection of licks at the spout). We ran the random-reward
condition while searching for cells in case it activated otherwise-
quiescent neurons. Animals were therefore exposed to hundreds of sole-
noid-reward pairings by the time the recordings were made.

DA cells were recorded under a series of control, conditioning, and
omission behavioral paradigms. Control paradigms were: random re-
ward (detailed above), to assess baseline responsiveness of the cell to the
reward and reward delivery, and cues only, which tested for responses to
a novel stimulus outside of any task context (no fluid available). The
stimulus was 0.5 or 2.0 s duration and consisted of a 4.5 kHz tone deliv-
ered from a speaker (SonAlert; Med Associates) mounted immediately
above the drinking spout. Conditioning trials involved exposing the an-
imal to a cued-reward paradigm, in which solenoid activation was pre-
ceded by one or two cues. Conditioning with the cued-reward paradigm
was continued until a robust response was seen to the cue, or the cell was
lost. In one-cue experiments, the solenoid activation occurred either at
the end of the cue or after a 1 s delay. In the two-cue experiments, cues
were separated by an intercue interval equal to the cue duration, and the
solenoid was activated at the end of the second cue. In most two-cue
experiments, both cues were tones, but for some cells, house-light illu-
mination was used for the second cue. In all paradigms, successive trials
were separated by pseudorandom intertrial intervals of 10-20 s.

Those cells still present after demonstrating conditioned responses to
the cues were tested with the omission paradigm. Here, for two-cue tests,
on any one trial, there was a probability of 0.6 of a standard cued-reward
sequence, as described above, and a probability of 0.2 for each of two
oddball sequences. These consisted of one sequence in which there was
no solenoid activation after the cues (omit reward) and another in which
the second cue was omitted but with activation of the reward solenoid at
the usual time relative to the first cue (omit cue 2). In one-cue tests, the
paradigm consisted of standard cued-reward (0.8 probability) and omit-
reward (0.2 probability) trials.

For cell recordings, signals from the electrodes were amplified (2—
10,000X), filtered (0.2-10 kHz bandpass), digitized (20 kHz), and re-
corded on computer using Discovery software (DataWave Technologies,
Berthoud, CO). The extracellularly recorded action potentials were dis-
criminated from each other and from noise based on wave shape using
the spike-sorting features of DataWave Personal Scientific Workstation
software.

Identification of DA cells. Recorded cells were screened and discarded if
the firing rate was >10 Hz or the action potential <1 ms in duration,
which represents the minimum cutoff between DA and slow-firing
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non-DA cells in recordings with the filter settings commonly used in
recordings from conscious rats and monkeys (Schultz, 1986; Romo and
Schultz, 1990; Ljungberg et al., 1992; Hyland et al., 2002). From this
group, only cells that were also profoundly (>50%) inhibited by the
dopamine agonist apomorphine (750 ug/kg, i.p.) or the D, receptor-
selective agonist quinpirole (400 ng/kg, s.c.) were accepted as presumed
DA cells (Bunney et al., 1973; Aghajanian and Bunney, 1977; Grace and
Bunney, 1980, 1983; Aebischer and Schultz, 1984; Hyland et al., 2002).
The position of the electrode tracks was confirmed after completion of
the experiments. A lesion was generated at the tip of recording wires by
passing DC current (9 V for 1-2 min). After 5-10 d survival time, rats
were killed by anesthetic overdose, perfused with saline then formalin
solution, the brains sectioned on a freezing microtome, and the position
of the marking lesions and cannula tracks mapped on standard atlas
sections (Paxinos and Watson, 1997).

Data analyses. Changes in firing rate associated with task events were
examined by constructing trial-by-trial dot raster displays and averaged
peri-event time histograms. Histograms routinely had bin widths of 25
ms, but 5 ms bin widths were used for measuring latency of responses.
Latency was measured from the left edge of the first bin of a peak or
trough after an event that was =2 SDs of the mean baseline firing rate
(calculated from the 2 s before the first event). Population histograms
were generated by calculating the average firing rate for equivalent bins
across the individual cell histograms, for groups of cells recorded at sim-
ilar stags of training. To enable comparison of changes in firing rate
induced by task events under different conditions across different cells,
we normalized histogram firing rates by calculating a modulation index
(MI) for each bin 7 in the original histogram, as follows:

R(i) — R(b)

MIG) = =Ry

(1)

where R(i) was the firing rate in bin 7, and R(b) was the average firing rate
over a 500 ms period beginning 1 s before the time of the first cue (base-
line firing rate).

TD modeling

The TD algorithm we used to model DA cell activity was based on that
described by Montague et al. (1996). Two stimuli, one at time step 5 and
one at time step 15, preceded reward occurrence at time step 20. To
prevent signals providing a predictive effect across trials, we imple-
mented pseudorandom gaps between the last time step of one trial and
the first time step of the next that were at least as long as trials, so that state
vectors were empty by the start of each trial.

The goal of the TD algorithm is to learn to predict future rewards. The
future rewards at time step t can be expressed as a value function V(#),
which is equal to the expected value (E[-]) of the discounted sum of all
future rewards in which the rewards (i) contribute less if they are farther
away in time, according to the discount factor y (Montague et al., 1996;
Schultz et al., 1997; Sutton and Barto, 1998), as follows:

V(t) =E E YD) | (2)

i=t+1

Because V(t) is not known, TD models proceed by calculating an
estimate P(t) of V(t). To achieve this, in our model, each sensory stimulus
I'was represented by a state vector x;, with dimension equal to the number
of time steps in a trial. Stimuli were represented in the state vectors as a
complete serial compound stimulus. In this kind of representation, if a
stimulus has occurred, then one component of the vector is “1,” and all
others are “0.” Which of the components is set at 1 at any one time
depends on the number of time steps that have passed since stimulus
occurrence. Thus, component g of the state vector is 1 if the stimulus
presentation was exactly ¢ — 1 time steps ago and 0 otherwise (Sutton
and Barto, 1990; Montague et al., 1996; Schultz et al., 1997).

Each state vector was associated with a matching weight vector w(t).
Estimates (predictions) of all future rewards P,(t) were formed for each
stimulus / by the dot product of the state and weight vectors as follows:
Py(t) = x,(t) - wy(t).
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The total reward prediction provided by all stimuli P(¢) was formed by
the sum of all stimulus-specific predictions (Suri and Schultz, 1999) as
follows:

P(1) = >, P(1). (3)
1

In the temporal difference algorithm, an estimate of the expected re-
ward at a particular time step ¢ is derived from the difference between the
prediction of all future rewards at that time step, P(t), and the prediction
of all future rewards that was generated at the previous time step, P(t — 1)
(Sutton, 1988). The difference between these successive predictions rep-
resents reward expected to occur at time t. It is this component of the
algorithm, which involves calculating a difference between two succes-
sive time steps, that gives rise to the term temporal difference. We there-
fore refer to this value as TD(¢): TD(t) = P(t — 1) — yP(¢). The discount
factor -y was set at 0.98 (Suri and Schultz, 1998).

The crucial step is then to compare this expected reward for time step
t with the actual reward that occurs at that time step, represented by the
scalar value (). Any difference between the actual and predicted rewards
generates the prediction error 8(¢): 8(t) = r(t) — TD(t).

All weight vectors were initialized with zeros. The prediction error was
used as a teaching signal to update the vector weights according to the
following weight change rule: Aw,(f) = ad(t)e,(t), where 0 < a =< 1 is
the learning rate parameter, and e,(#) is the eligibility trace for stimulus L.
The eligibility trace enables weights associated with previous time steps to
be altered by prediction error at time step ¢t and was calculated recursively
(Sutton, 1988) by the following: e,(t + 1) = Aey(t) + x,(t), where A is the
eligibility trace decay parameter. If A = 1, all weights are affected equally
[TD(1) model]. If A = 0, only weights associated with the immediate
previous state are affected [TD(0) model]. The effect when 0 < A < 11is
to exponentially bias weight change so that vectors representing the most
recent events are affected the most by the prediction error signal [TD(A)
model].

The baseline spiking activity of DA cells (~5 Hz) can be equated to a
state of 0 prediction error (Schultz et al., 1997). Spike activity can only be
suppressed from this baseline down to 0 Hz. On the other hand, DA cells
can be transiently excited to instantaneous rates of up to 100 Hz (Hyland
etal., 2002). They are therefore very asymmetrical in the range of positive
and negative prediction error signal amplitudes they can generate. To
model this, we applied a limit to the amplitude of the negative prediction
error such that negative and positive prediction errors were scaled in a
similar way to the dynamic range of dopamine cell activity. In prelimi-
nary runs of the model, we found that the largest positive prediction error
values approached 1, which can be equated to the maximum firing rate
(100 Hz) in DA cells. The maximum negative prediction error was there-
fore limited to —0.05.

Results

From 45 neurons that were possibly dopaminergic on electro-
physiological criteria, 24 recorded from 11 rats were confirmed
DA neurons based on having a clear inhibitory response to dopa-
mine agonist drugs (Fig. 1 A). This group had an average firing
rate of 5.7 = 3.5 Hz (mean * SD), action potential duration of
1.5 = 1.3 ms, and were located in the midbrain dopamine cell
fields (Fig. 1 B) including both medial A9 (substantia nigra pars
compacta) and lateral A10 (ventral tegmental area and supra-
mammillary nucleus). There was no regional difference in re-
sponse patterns, so all cells from all regions were pooled for
analysis.

Conditioning of DA cell responses to cues

Dopamine cells displayed rapid response plasticity during classi-
cal conditioning of cue-reward associations. DA cells responded
to random reward, and then new responses to tone cues devel-
oped rapidly when these were paired with reward. Typical fea-
tures of the development of conditioned responses during learn-
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Figure 1. Identification of DA cells. 4, Electrophysiological and pharmacological criteria.
Rate meter histogram shows low baseline firing rate, lack of response to control saline injection,
and inhibitory response of a typical presumed DA neuron to injection of apomorphine (750
g/kg, i.p.). Gaps in histogram are periods during which recording was suspended. Inset shows
overlaid recorded waveforms from this cell, 2 ms total time. B, Location of recorded cells.
Histological section shows a cannula track (arrowheads) approaching midbrain DA cell fields
and marking lesion (arrow) at the site of recording of a presumed DA neuron. Atlas section
diagrams (Paxinos and Watson, 1997) show reconstructed positions of all tracks on which DA
cells were recorded (anteroposterior coordinate in mm, relative to bregma, at left). Some tracks
yielded more than one cell. SNc, Substantia nigra pars compacta; SNr, substantia nigra pars
reticulata; SuM, supramammillary nucleus; VTA, ventral tegmental area.

ing are illustrated in Figure 2. New short-latency responses
(excitations, 74 = 33 ms; inhibitions, 53 £ 9 ms) began within
the first block of training. This cellular conditioning occurred in
most cells tested (8 of 11) and developed over a similar time
course to the development of conditioned behavior (licking re-
sponses to the cues). In 13 other dopamine neurons, recordings
were made after acquisition of the behavioral response. Re-
sponses to the tone cues were seen in 11 of these cells. These
responses were diminished or extinguished after continued ex-
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Figure2. Development of conditioned responses to cues in two different DA neurons. 4, DA

neuron conditioned with a single tone cue. The top histogram and dot raster show average and
trial-by-trial responses to solenoid (filled triangle) in random-reward paradigm. The dot raster
shows time of action potentials onindividual trials, in original order, first trial at the bottom. The
middle and bottom histograms and rasters show the responses of the cell in successive condi-
tioning blocks in which the solenoid was paired with the cue (onset at double arrowhead). B, DA
cell conditioned with the two-cue paradigm. Panel layout and labels as for A. Neither cell
responded to cues before conditioning (data not shown).

posure to the cues in the absence of rewards, consistent with these
also being conditioned responses.

Importantly, in contrast to previous model expectations, we
found that new conditioned responses made their first appear-
ance at a constant, short latency after predictive cues in condi-
tioning with either a single (Fig. 2A) or double (Fig. 2B) cue.
These new responses developed rapidly, within a few trials, as can
be seen in the dot raster displays of trial-by-trial cell activity.
Thus, in these experiments, we found no evidence for a gradual
shift in latency of the responses. Similarly, we found that in all
cells conditioned with two cues presented in sequence there was a
clear response to the second cue, which persisted throughout the
experiment (Fig. 2 B). An additional cell tested with a tone-light
cue sequence (data not shown) also responded to both cues.

Finally, we found that responses to reward remained long after
the new responses to the predictive cues had developed. This was
true both for cells recorded with a single cue (Fig. 2A) and in the
two-cue paradigm (Fig. 2 B) and was seen in all cells recorded in
early training. However, this effect appeared to be dependent on
the duration of training. Figure 3 shows a comparison of single-
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cell examples and population average data obtained from early
(Fig. 3A) and late training (Fig. 3B). It is notable that unlike the
persistent responses seen in DA cells recorded early in training,
cells recorded after many sessions of cue-reward pairing were
unresponsive to predictable reward delivery (Fig. 3B, middle).
These cells were still capable of responding to the reward, as
demonstrated by robust responses to solenoid activation when
delivered without any cues (Fig. 3, left) or on trials in which the
second cue was unexpectedly omitted (Fig. 3, right). These data
indicate that the development of conditioned responses to cues
does not directly lead to abolishment of responses to rewards.
Rather, responses to predicted rewards are only completely lost
after a period of training that extends beyond that required to
first establish conditioned responses to predictive cues.

We also observed that compared with trials in which reward
was preceded by two cues, omission of the second cue (Fig. 3,
right) restored responses to the solenoid to levels seen with ran-
dom reward (Fig. 3, left). This was the case both early and late in
training. Thus, learning about the intermediate cue was not
blocked by the presence of the preceding one, in the sense that the
presence or absence of the second cue was taken into account in
determining cell responses to the reward.

Prediction error signaling in TD models includes a negative
signal at the time of expected rewards and cues if these fail to
materialize (Schultz et al., 1997). For DA cell firing at the time of
omitted second cue in the two-cue paradigm, this effect was
weakly seen in some cells but not others, reflected in the absence
of clear inhibitory troughs in population histograms (Fig. 3 A, B).
Quantitative analysis of the period 200 ms after the expected time
of the second cue compared with baseline in seven cells tested
with cue 2 omission in the two-cue paradigm yielded an average
modulation index at the time of the expected cue of —0.12 = 0.17
(mean = SD; where 0 = normalized baseline), which represented
a nonsignificant difference from baseline firing rate. However, a
significant reduction in firing rate was observed when expected
rewards were omitted (average modulation index, —0.21 % 0.20;
p < 0.01; paired ¢ test; n = 11).

TD model

The differences between the predictions of previous TD models
and our data raise questions about the ability of TD models to
reflect DA cell activity in the rat brain. To investigate whether our
observations of DA cell activity can be reconciled with current TD
models, we explored the performance of the TD algorithm over a
range of parameter settings. Our TD model (Fig. 4A) was based
on the algorithm described by Montague et al. (1996) but modi-
fied by limiting the amplitude of the negative prediction error to
match the limited range over which DA cells can be inhibited in
activity (see Materials and Methods).

We used a TD model with the same sequence of cues and
reward as in our DA cell recording experiments to investigate the
role of two key parameters, a and A. The parameter « (learning
rate) sets the magnitude of vector weight changes induced by the
prediction error signal. The eligibility-trace decay parameter A
determines to what extent predictions that are farther away in
time are altered by the weight update (Sutton and Barto, 1998).
We found important effects of the values of these parameters on
the behavior of the model. Figure 4 B shows model prediction
error output over learning trials for A = 0 and o = 0.05. These
settings produce a pattern of prediction error output similar to
that reported previously (Montague et al., 1996; Schultz et al.,
1997). In particular, there is no clear time-locked response to the
second cue, and the response to the first cue develops only after a
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high values of A were the critical factor that
enabled the model to learn about the sig-
nificance of cues without gradual trial-by-
trial stepwise migration of responses from
rewards to cues. As A was reduced below a
threshold level (~0.6 for the number of
time steps modeled here), step-wise mi-
gration of prediction error signals ap-

Omit cue 2
] * A 4

single cell

Trials

peared for all values of . The setting for «
appeared less critical, only failing to pro-

population

duce learning at very high values, as has
been noted previously (Sutton and Barto,
1998; Suri, 2001). Otherwise, the value for
a, given a suitable setting for A, deter-
mined the number of trials needed for
growth of the cue response and for aboli-
tion of the reward response and therefore
the number of trials over which these re-
sponses coexisted. In Figure 4C, the setting
for a has been chosen so that suppression
of responses to predicted rewards oc-
curred only after hundreds of trials, as seen
in the cell data.

The relationship between model and
cell data are further explored in Figure 6,
which compares model prediction errors
with DA cell activity when cue 2 was omit-

ted after training in the two-cue paradigm.
The model (Fig. 6 A) generated small neg-

ative prediction errors when the expected
cue was omitted, replicating the fact that
only small inhibitions were seen in DA cell
recordings. This was expected because of
the limit placed on the possible range of
negative prediction errors. Of more inter-
est, this analysis also showed that omitting
Time the second cue in trials in the model re-

stored the amplitude of the prediction er-
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Figure 3.  Effect of training on responses of DA cells to reward delivery under different states of predictability. 4, Data from

animals early (=6 blocks) in training. The top histograms and dot rasters show a single example cell (same cell as Fig. 2 A) in the
random-reward paradigm (left), cued-reward trials from within the omission paradigm (middle), and omit cue 2 trials of the
omission paradigm (right). Population histograms below the rasters were calculated by averaging 50 ms bin counts across all
individual histograms (n = 6, 8,and 3, respectively) and converting to instantaneous frequency. Error bars represent SEM. B, Data
from animals that had been exposed to =10 blocks of conditioning (late training). Panel layout and labels as for A. Population
histograms were constructed from five, five, and fourindividual histograms, respectively. Horizontal calibration bar shows 0.5 s for
all panels except the example cell datain A (2s). Asterisks show time at which cue 2 would normally occur (omit cue 2 trials).

gradual shift in response latency from the time of the reward to
the time of the first cue. During this time, there is no response
time-locked to either the first cue or the reward, so that there is no
overlap in time between cue and reward responses. The pattern is
clearly different to that seen in DA cells (Fig. 4D).

In contrast, Figure 4C shows the result for A = 0.9, with a =
0.005. With these values, the prediction error signal output re-
produced key elements of the pattern seen during learning in our
DA cell recording experiments (Fig. 4 D). In particular, there is a
clear time-locked response to the intermediate cue, and new re-
sponses appear at their final latency, rather than progressively
shifting in time toward the first cue. Early in training, newly
developed responses to cue 1 and to reward coexist, with
predicted-reward responses only disappearing with additional
training, just as seen in the cell data.

Examination of three-dimensional (3-D) plots of model per-
formance over a range of parameter settings (Fig. 5) showed that

ror response to the reward toward the level
seen when the reward was entirely unpre-
dicted by cues. This occurred in the model
despite the presence of a conditioned pre-
diction error response to that cue and was
the case both early in training, when re-
ward responses were only mildly sup-
pressed, and later, when reward responses
were abolished by the presence of preceding cue signals. How-
ever, later in training, the amplitude of the restoration was some-
what less. Thus, in the TD model, the second and seemingly
redundant cue develops a role in the prediction of reward. The
relevant cell population data from Figure 3 is shown in Figure 6 B,
illustrating the similar restoration of responses and suggesting
differential amplitude of restoration depending on stage of
training.

Discussion

These results extend previous findings from rats that DA cells
respond to sensory cues predicting reward (Miller et al., 1981;
Kosobud et al., 1994; Kiyatkin and Rebec, 2001; Hyland et al.,
2002) and show for the first time that these are contingent on
cue-reward association and arise during acquisition of classically
conditioned behavior. We also noted significant depression of
DA cell activity at the time of omitted rewards, indicating that rat
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DA cells are capable of signaling negative
prediction error. The amplitude of inhibi-
tions was small, consistent with the fact
that inhibitory responses can be difficult to
detect and quantify in neurons that al-
ready have a low baseline rate of activity, as
noted previously in primate studies (Fior-
illo et al., 2003; Morris et al., 2004). The
activity of dopamine cells in signaled re-
ward tasks in rats thus appears very similar
to that seen in monkeys. Crucially, plastic-
ity of responding as evidenced by the de-
velopment of conditioned responses dur-
ing task learning is necessary if DA cells are
to provide a reward prediction error func-
tion in a TD-type process.

However, at first, the data appeared to
be inconsistent with TD approaches, be-
cause they failed to match specific predic-
tions from previous modeling. Rat DA
cells showed no evidence of step-wise mi-
gration of response latencies during initial
conditioning, which was predicted. In fur-
ther contrast to expectations, we consis-
tently observed responding to both the
first cue and the reward during initial
training. We also noted clear and persis-
tent responses to the intermediate cue in
the two-cue paradigm. Neither of these
phenomena should occur if a step-wise
shift in prediction error explained the
overall shift from reward to cue.

Inspection of existing data sets from
primates also provides no support for the
gradual migration of a response during
learning (Mirenowicz and Schultz, 1994;
Hollerman and Schultz, 1998; Waelti et al.,
2001; Takikawa et al., 2004) and suggests
that DA cells show simultaneous respond-
ing to both cue and reward, at least early in
learning (Ljungberg et al., 1992; Schultz et
al., 1993; Mirenowicz and Schultz, 1994;
Fiorillo et al., 2003; Takikawa et al., 2004).
On the other hand, early studies compar-
ing DA cell responses early and late in
training demonstrated that responses to
rewards were diminished in highly trained
animals (Ljungbergetal., 1992). We found
a similar result here; in rats in which sev-
eral DA cells were recorded sequentially
and that therefore had more exposure to
the cue-reward pairing, responses to pre-
dicted rewards could eventually be abol-
ished. Together, these data suggest that
there are different time courses for acqui-
sition of new conditioned responses to
cues and the loss of responses to the re-
wards predicted by those cues. This stands
in clear contrast to the sequential changes
and mutually exclusivity of cue and reward
responses that are implied by previous TD
models of DA cell activity (Montague et
al., 1996; Schultz et al., 1997).
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Figure 4.  TD models of DA cell activity during learning. 4, Simplified network diagram summarizing main features of the TD
model. Each sensory signal §; is represented by a state vector x;, which encodes the signal over time (curved arrows). At any time
step ¢, output of the state vector gives rise to a prediction P(t), which depends on the weight w(t) of the component representing
the signal at that time. Component weights are eligible for modification after the occurrence of S, depending on the value of the
eligibility trace (). Predictions at time step t are subtracted from the prediction of the previous time step to generate the
temporal difference [TD(t)]. The TD output is compared with the value of the reward signal r(t) to generate the prediction error
5(t), equated with DA cell activity. This then modifies weights of the state vector x, representing S, depending on their eligibility
and the learning rate (cv). B, Surface plot shows TD prediction error amplitude (vertical axis) during each trial, over the course of
learning (400 trials), with A = 0 and o = 0.05. Grid lines show each time step on every 10th trial. Cues were delivered at time
step 5 and 15 and reward at time step 20. Line graphs show prediction error profiles of single trials from the positions on the
surface indicated by the arrows, before training (bottom), early in training (middle), and late in training (top). €, Surface plot and
single trials for TD learning with A = 0.9 and o = 0.005 (500 trials). Surface grid lines show every 10th trial. D, Population data
from DA cell recordings. The same data from Figure 34 (animals with little training) and Figure 3B (animals with more extensive
training) have been replotted as line graphs, after normalizing for different firing rate by converting to modulation index (see
Materials and Methods) and smoothing by a three-step running average. The bottom plot shows responses to unpredicted
rewards of both early and late training groups overlaid. The middle plot shows data from cells recorded in animals in early training
and top plot data from different cells recorded in animals late in training. It is clear that the cell data matches well the model
profiles in € but not those generated by the parameters used in B. Calibration bar, 500 ms.
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Figure 5.  Exploration of the parameter space of the TD algorithm. Each 3-D surface plot shows changes in prediction error

output over the course of conditioning for a different value of c and A. Cues were delivered at time steps 5 and 15 and reward at
time step 20. The number of trials shown in each plot ( n) was varied for different settings of e, so that similar levels of learning
were obtained by the end of the simulation.
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Figure 6.  TD modeling of the response of DA cells to omission of an expected intermediate

cue signal. A, Prediction error outputs from successive single trials of TD model (A = 0.9; « =
0.005), in which the second cue was either present (solid lines) or omitted (dotted lines). The
two lines completely overlap exceptat times of cue 2 and reward. The top graph shows trial from
earlyin training (trials 100 and 101) and bottom graph from late in training (trials 400 and 401).
The calibration bar indicates five time steps. B, DA cell population data for the early and late
training groups from Figure 3, normalized and smoothed as described in the legend for Figure 4.
Solid lines show population histograms derived from cued-reward trials within the omission
paradigm. Dotted lines show response to cue 2 omission within the same omission paradigm
block for the same cells. Calibration, 500 ms.

However, when we investigated the effects of different settings
for the parameters « and A of the TD algorithm, we found that
these apparent disparities between TD model prediction errors
and DA cell activity are attributable to the particular choice of
parameters used in the model. Thus, instead of posing a problem
for TD models, the present results show that classical TD mech-
anisms can account for a wider range of observed DA cell behav-
iors than previously envisaged. This match of the classical TD
model with physiology complements other modifications of the
TD method (Daw et al., 2003; Nakahara et al., 2004), which can
account for different aspects of neural activity and behavioral
performance. It is important to note that our results should not
be understood as providing explicit fixed values for neural TD
learning parameters, because the specific values that produce the
best fit to the data may be different if details of the model struc-
ture were changed. For instance, it is not known how sensory
stimuli are represented in the brain for reward learning. We fol-
lowed many previous studies in using a serial compound repre-
sentation of conditioned stimuli. Alternative representations can
be envisaged (Suri and Schultz, 1998, 1999), which might lead to
different specific parameter values. Importantly, the present
findings constrain TD approaches to brain function by establish-
ing the biologically relevant boundaries for the parameter space
that can be linked to physiologically plausible processes.

The parameter A was of particular importance. Previous stud-
ies of the application of the TD algorithm to DA cell data have
used TD(0) versions (in which A = 0) to account for some aspects
of DA cell responses (Montague et al., 1996; Schultz et al., 1997).
In TD(0) models, learning occurs progressively across trials with
the prediction error signal occurring one time step earlier on each
trial until it “arrives” at the cue. Development of a prediction
error response to an event k time steps in the past thus requires at
least k trials. The advantage of TD(0) in machine learning con-
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texts is that, when the number of trials is not limiting, it is com-
putationally simpler to implement than the other variants (Sut-
ton and Barto, 1998). However, it is the step-wise learning aspect
of these models that leads to specific predicted patterns of activity
that we failed to find in recorded DA cells. A physiological inter-
pretation of TD(0) is that the system can only hold a memory of
an event from one moment to the next. Our findings suggest that
this limitation cannot apply to learning in the brain reward
pathways.

In contrast, we were able to replicate the observed DA cell
responses using TD(A) models, in which 0 < A < 1. In TD(A),
vector weights representing a sensory signal remain eligible for
modification by prediction error signals for a variable number of
time steps after the signal has occurred. This eligibility trace al-
lows bridging between events removed from one another in time
within a single trial (Sutton and Barto, 1998). TD(A) models have
been shown in some machine-learning circumstances to be more
efficient than TD(0) or TD(1) (Tesauro, 1992; Kaelbling et al.,
1996; Sutton and Barto, 1998). Several formal algorithmic mod-
els of biological learning phenomena have incorporated eligibil-
ity traces (Barto and Sutton, 1982; Sutton, 1988; Sutton and
Barto, 1990; Houk et al., 1995), following a suggestion by Klopf
[cited in Klopf (1988)]. Eligibility traces have been used in TD
models of neural circuits to accelerate learning, but the impact on
the pattern of prediction error signaling by DA cells does not
appear to have been explored in detail (Suri and Schultz, 1999,
2001; Suri, 2001). The concept that for delayed associative con-
ditioning to occur there must be some memory or trace of the
antecedent signal at the time of a subsequent reward is as old as
the study of classical conditioning itself (Pavlov, 1927; Hull,
1943). Our finding of an excellent match between DA cell record-
ings and TD(A) models strongly suggests that a process produc-
ing similar effects to a prolonged eligibility trace probably occurs
in the circuits regulating DA cell activity in the brain.

The present finding that A needs to be set at the high end ofits
range suggests that the proposed neural eligibility traces must last
for asignificant portion of the interval between trial events, which
in the present study was in the order of seconds. The existence of
eligibility traces lasting several seconds in neural circuits is open
to experimental verification. Potential mechanisms include sus-
tained firing in reverberating circuits and biochemical mecha-
nisms acting at the synaptic level (Houk et al., 1995).

The parameter a sets the learning rate for weight changes. Low
values for a slow the rate at which prediction error signals to cues
and rewards develop or are lost. Thus, very low a in combination
with high A generates a prolonged period over which both cue
and reward responses occur, as seen in the DA cell data. A phys-
iological interpretation of this low learning rate is that plastic
elements in the brain (analogous to the modifiable vector weights
of the model) only change by a small proportion of the total
dynamic range available to them on any one trial. This seems
plausible, given that on each trial there is only a single conjunc-
tion between cue and prediction error.

A low learning rate may be considered a disadvantage. How-
ever, previous studies in machine learning have found that when
A is set high to enable learning to begin early in training, low
values of @ improve the stability of learning (Tesauro, 1992; Ci-
chosz, 1995; Kaelbling et al., 1996; Singh and Sutton, 1996). Thus,
combining prolonged eligibility for change with low rates for
learning rate offers considerable practical advantages that may
have provided significant selective pressure for the coevolution of
equivalent parameter settings in the brain.
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