Exp Brain Res (2010) 200:307-317
DOI 10.1007/s00221-009-2060-6

REVIEW

Striatal action-learning based on dopamine concentration
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Abstract The reinforcement learning hypothesis of dopa-
mine function predicts that dopamine acts as a teaching sig-
nal by governing synaptic plasticity in the striatum.
Induced changes in synaptic strength enable the cortico-
striatal network to learn a mapping between situations and
actions that lead to a reward. A review of the relevant neu-
rophysiology of dopamine function in the cortico-striatal
network and the machine reinforcement learning hypothe-
sis reveals an apparent mismatch with recent electrophysio-
logical studies. It was found that in addition to the well-
described reward-related responses, a subpopulation of
dopamine neurons also exhibits phasic responses to aver-
sive stimuli or to cues predicting aversive stimuli. Obvi-
ously, actions that lead to aversive events should not be
reinforced. However, published data suggest that the phasic
responses of dopamine neurons to reward-related stimuli
have a higher firing rate and have a longer duration than
phasic responses of dopamine neurons to aversion-related
stimuli. We propose that based on different dopamine
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concentrations, the target structures are able to decode
reward-related dopamine from aversion-related dopamine
responses. Thereby, the learning of actions in the basal-
ganglia network integrates information about both costs
and benefits. This hypothesis predicts that dopamine con-
centration should be a crucial parameter for plasticity rules
at cortico-striatal synapses. Recent in vitro studies on cor-
tico-striatal synaptic plasticity rules support a striatal
action-learning scheme where during reward-related dopa-
mine release dopamine-dependent forms of synaptic plas-
ticity occur, while during aversion-related dopamine
release the dopamine concentration only allows dopamine-
independent forms of synaptic plasticity to occur.

Keywords Basal ganglia - Dopamine - Learning -
Action value - Reinforcement learning

Dopamine in the striatum

The study of the basal-ganglia complex, and of dopamine
function in particular, has traditionally been approached
from two directions. On one hand, the ventral school,
primarily interested in drug addiction and in psychotic dis-
orders, has focused their research on the nucleus accum-
bens (in the ventral striatum) and its projections, along with
its dopamine input structure, the ventral tegmental area
(VTA, A10) (Kelley et al. 1982; Bonci and Malenka 1999;
Thomas and Malenka 2003; Di Chiara et al. 2004; Cardinal
et al. 2002; Arroyo et al. 1998; Ito et al. 2004; Voorn et al.
2004; Kelley 2004; Di Chiara and Bassareo 2007; Dalley
et al. 2007; Wheeler and Carelli 2009). On the other hand,
the dorsal school, originally occupied with movement
disorders, concentrated on the dorsal striatum (caudate and
putamen nuclei), with their corresponding dopamine
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source—the substanitia nigra pars compacta (SNc, A9)
(DeLong and Georgopoulos 1981; Schultz 1982; Schultz
etal. 1985; Bergman etal. 1990; Alexander et al. 1990;
Schultz 1994). This dissociation was paralleled with the
choice of animals to study the structures. Since the motor
functions of rodents are not easily quantifiable, the dorsal
school quickly converged to primate research, while the
ventral school’s model animal of choice has been the rat.
Although the research areas have now converged, this his-
torical segregation in laboratory animals impedes system-
atic comparison of experimental results collected from the
ventral dopaminergic structure of the VTA and the dorsal
structure of the SNc. Still, a growing body of evidence sug-
gests a large similarity between the ventral and dorsal
aspects of the basal ganglia, indicating that information
processing is similar in both parts. Functional differences
probably do not arise from different processing algorithms
but instead are due to differences in input and output con-
nectivity (i.e., in the type of information they process)
along the dorsal-ventral gradient (Wickens et al. 2007).

The last two decades in striatum and dopamine research
have witnessed an abandonment of old controversies in
favor of a relative consensus on the view of the role of basal
ganglia. In particular, this applies to the role of dopamine in
the input structure of the basal ganglia, the striatum. In the
1980s and the first half of the 1990s, the ventral school dis-
cussed the hedonic value of dopamine (Berridge 1996;
Royall and Klemm 1981; Wise 2008). Anatomical and
physiological studies argued whether information process-
ing in the basal ganglia was comprised of parallel or con-
verging circuits (Alexander etal. 1986; Percheron and
Filion 1991). The study of motor control and movement
disorders focused on the basal ganglia involvement in
action initiation versus action selection (Mink 1996). Now-
adays, most discourse is comfortable with the notion that
the basal ganglia are involved in the mapping of situations
(or states) to actions; that dopamine (and other basal-gan-
glia neuromodulators) plays a major role in learning this
mapping, and that partially overlapping circuits, with sub-
stantial convergence within each, constitute different facets
of the same basic computation. Recent research has shed
new light on different aspects of this picture, calling for
refining the prevailing theory. In this review, we present the
dominant theories of the basal ganglia and dopamine in
light of the new perspective offered by the new data.

The striatum serves as an input structure of the basal
ganglia (Fig. 1), a group of nuclei which forms a closed
loop with the cortex, and which has been implicated with
motor, cognitive and limbic roles (Haber et al. 2000). A
large majority (90-95%) of neurons in the striatum are
medium spiny projection neurons (MSNs). These neurons
receive excitatory glutamatergic input from the cortex and
the thalamus and project to the globus pallidus (internal and

@ Springer

CORTEX

I

v
Striatum

D2 ’:>D1

T

GPe

T

STN

Ny

Fig. 1 Schematic view of the connectivity of the two pathway model
of the cortex—basal-ganglia network. Direct/Go/D1 pathway is depict-
ed on the left-hand side and the indirect/No-Go/D2 pathway on the
right. White arrows indicate excitatory connections, and black arrows
denote inhibitory connections. STN subthalamic nucleus, GPe,GPi
external, internal segment of the globus pallidus, SNc SNr substantia
nigra pars compacta and reticulata, respectively

Thalamus

GPi/SNr

external segments, GPi and GPe, respectively), the substan-
tia nigra (pars reticulata, SNr, and pars compacta, SNc)
with inhibitory connections. In fact, with the exception of
the projections from the subthalamic nucleus (STN), all the
main projections in the basal-ganglia network use the inhib-
itory neurotransmitter gamma-aminobutyric acid (GABA).
The projections from the striatum are classically divided
into two pathways (Fig. 1), each of which exerting opposite
net effects on the target thalamic (and thus cortical) struc-
tures (Albin et al. 1989; Alexander and Crutcher 1990; Ger-
fen 1992). While activation in the direct pathway results in
a net thalamic excitation through dis-inhibition, indirect
pathway activation results in net thalamic inhibition
through triple inhibition (plus STN excitation). In light of
the thalamic and motor control of action, the direct and
indirect pathways have been conveniently described as the
Go and No-Go pathways, respectively (Frank et al. 2004).
Although the two pathways might not be completely segre-
gated (Smith et al. 1998), they do differ in a number of
unique biochemical properties (Nicola et al. 2000). Most
importantly, the dopaminergic input onto the striatum
affects the MSNs of the Go and No-Go pathways differently
due to differential expression of dopamine receptors. MSNs
of the Go/Direct pathways are equipped with D1 type dopa-
mine receptors, while those of the No-Go/Indirect pathway
express D2 type dopamine receptors. Additionally, Go
MSNss secrete substance P in addition to GABA and No-Go
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MSNs produce enkephalin as well as GABA, and uniquely
express A,, type adenosine receptors.

An important feature of basal-ganglia anatomy is the
high concentration of neuromodulators in the striatum.
Both dorsal (caudate and putamen) and ventral (nucleus
accumbens) nuclei of the striatum show the highest density
of brain markers for dopamine (Bjorklund and Lindvall
1984; Lavoie et al. 1989) and acetylcholine (Woolf 1991;
Holt et al. 1997; Descarries et al. 1997; Zhou et al. 2001,
2003), as well as a high degree of 5-HT immunoreactivity
indicating serotoninergic innervation (Lavoie and Parent
1990).

The midbrain dopamine system consists of neurons
located in the VTA and the SNc, projecting mainly to the
ventral and dorsal striatum, respectively. A third pathway,
from the VTA to other frontal targets, is less pronounced,
and probably important for other behaviors and patholo-
gies. Furthermore, the synaptic anatomy of the glutamater-
gic and dopaminergic inputs in the striatum is of vast
importance. It has been found that a majority of the gluta-
matergic cortico-striatal and thalamostriatal synapses are in
the functional proximity of dopaminergic innervation
(Moss and Bolam 2008).

Functional roles of dopamine

Pioneering physiological self-stimulation studies of the
neural correlates of pleasure, motivation and reward centers
have identified the brain regions mediating the sensation of
pleasure and behavior oriented toward it (Olds and Milner
1954). The structures involved were believed to be the lat-
eral septum, lateral hypothalamus, its connections to the
midbrain areas of the tegmentum, as well as the tegmentum
itself and its projection to the forebrain via the medial fore-
brain bundle (MFB). It is now commonly accepted that the
optimal region for self-stimulation is the MFB, also known
as the meso-limbic pathway, carrying dopamine from the
VTA to the ventral striatum or NAc.

Early hypotheses on dopamine function proposed that
dopamine signals pleasure or hedonia (Wise 1996). This
view is now commonly rejected, giving rise to two lines of
thought. The first assigns dopamine with a general function
in behavioral arousal, motivation and effort allocation (Sal-
amone et al. 2007). Conversely, the second group of theo-
ries argues for a more specific role of dopamine in reward-
related behavior (Schultz 2002; Berridge 2007; Redgrave
etal. 2008). Among the latter, a further division can be
drawn between groups claiming that dopamine plays a
causal role in learning (Schultz 2002; Redgrave et al.
2008), and those that assume a reversed causality, accord-
ing to which the dopamine signal results from learning and
is used to guide behavior (Berridge 2007).

There are two major hypotheses for dopamine that pro-
pose a causal role for dopamine in learning. The first one
can be referred to as ‘prediction-error’ hypothesis (Schultz
2002; Schultz et al. 1997). It receives support from electro-
physiological recordings of dopamine neurons of animals
performing reward-related learning tasks. In these experi-
ments it was repeatedly shown that the activity of dopamine
neurons exhibits striking resemblance to a teaching signal
commonly employed in the machine learning field of rein-
forcement learning (Sutton and Barto 1998) (see below for
further details). These results have led to a model in which
the signal emitted by dopamine neurons plays a causal role
in reward-related learning, causing reinforcement of actions
that lead to the reward. This learning will result in a ten-
dency to repeat rewarded actions. A more recent hypothesis
for dopamine in learning (Redgrave et al. 2008) proposes
that dopamine is important for learning the association
between action-outcome pairs. It is assumed that salient
sensory events evoke dopamine responses. This signal is
then used to reinforce all actions that preceded the salient
event, thereby assisting in identification of the action that
caused the event. As a result, the animal learns the conse-
quence of certain behaviors on the environment.

The hypotheses on dopamine playing a causal role in
learning have been challenged by Berridge and colleagues
(Berridge and Robinson 1998; Berridge 2007). Instead,
they propose an alternative theory termed the incentive
salience hypothesis of reward dopamine. According to this
theory, the similarity of the dopamine signal to a prediction
error is relayed from one of its input structures, reflecting
learning in upstream neural circuits. Rather, dopamine
guides behavior by tagging a particular stimulus as
‘wanted’ and directing behavior toward it. Thereby dopa-
mine is essential for the expression of learning but not for
the learning itself.

Recent findings on dopamine released by aversive stim-
uli (Joshua et al. 2008; Brischoux et al. 2009; Matsumoto
and Hikosaka 2009) challenge current views on dopamine
function. In the following we review the reinforcement
learning hypothesis of dopamine in more detail and discuss
how it can be reconciled to accommodate recent findings on
dopamine activity.

Dopamine and reinforcement learning

Despite differences in theories, behavioral psychologists
(Thorndike 1911; Pavlov 1927; Skinner 1974) claim that
the following basic rule gives a sufficient account for learn-
ing: behavior is followed by a consequence, and the nature
of the consequence determines the tendency to repeat the
same behavior in the future. This rule is best known by its
formulation by Thorndike (1898), later coined as Thorndike’s
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law of effect, which reads as follows: “The Law of Effect is
that: Of several responses made to the same situation, those
which are accompanied or closely followed by satisfaction
to the animal will, other things being equal, be more firmly
connected with the situation, so that, when it recurs, they
will be more likely to recur” (Thorndike 1911). This defini-
tion sets the basis for reinforcement learning in the field of
psychology, which has subsequently lent its name to the
field of machine learning.

Reinforcement learning is situated at an intermediate
step between supervised and unsupervised forms of
machine learning. In reinforcement learning the learning
agent receives limited feedback in the form of rewards and
punishments. This feedback is used by the agent to learn to
choose the best action in a given situation so that the overall
cumulative reward is maximized. Punishments are usually
implemented simply as negative rewards. Theorists in the
field of artificial intelligence have studied this type of learn-
ing intensively. They have developed powerful reinforce-
ment learning algorithms such as temporal-difference (TD)
learning (Sutton 1988; Sutton and Barto 1998), which over-
comes the major difficulties of learning through unspecific
feedback. In this method of learning at each point in time
the value (expected reward) at the next point in time is esti-
mated. When external reward is delivered, it is translated
into an internal signal indicating whether the value of the
current state is better or worse than predicted. This signal is
called the TD error, and it serves to improve reward predic-
tions and reinforce (or extinguish) particular behaviors.

Physiological and psychological studies have revealed
that dopamine plays a crucial role in the control of motiva-
tion and learning. Dopaminergic deficits have been shown to
disrupt reward-related procedural learning processes
(Knowlton et al. 1996; Matsumoto et al. 1999). Insight into
the involvement of striatal dopamine release in learning is
obtained from the analogy with the TD reinforcement learn-
ing algorithm. When presented with an unpredicted reward
or with stimuli that predict reward, midbrain dopaminergic
neurons display stereotypical responses consisting of a pha-
sic elevation in their firing rate (Schultz et al. 1997; Holler-
man and Schultz 1998; Waelti et al. 2001; Kawagoe et al.
2004; Morris et al. 2004; Bayer and Glimcher 2005). Con-
gruent with the TD-learning model we describe next, this
response typically shifts to the earliest reward-predicting
stimulus (Hollerman and Schultz 1998; Pan et al. 2005).

Temporal-difference learning
The first objective of a reinforcement learning algorithm is to
estimate a value function that describes future rewards based

on the current state. In the terms of classical conditioning,
the relevant information in the states is called the condi-
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tioned stimulus (CS), whereas the reward is the uncondi-
tioned stimulus (US). The reinforcement learning algorithm
must learn to predict upcoming reward based on the state. A
very influential approach to this problem was proposed by
Rescorla and Wagner (1972). There, learning is induced by
the discrepancy between what is predicted and what actually
happens. However, this account does not model time within
a trial, thereby neglecting several key aspects of natural
learning. For example, reward is often delayed, and might
also be separated from the action for which it was rewarded
by other, irrelevant actions. This poses the problem of ‘tem-
poral credit assignment’: what action was crucial to obtain
the reward? To address this problem, an extension to the
Rescorla—Wagner model was put forth by Sutton (1988),
which came to be known as TD learning and has been
widely used in modeling behavioral and neural aspects of
reward-related learning (Montague et al. 1996; Schultz et al.
1997; O’Doherty et al. 2003; Redish 2004; Nakahara et al.
2004; Seymour et al. 2004; Pan et al. 2008; Pan et al. 2005;
Ludvig et al. 2008). This learning algorithm utilizes a form
of bootstrapping, in which reward predictions are constantly
improved by comparing them to actual rewards (see descrip-
tion in Sutton and Barto 1998). A classical conditioning set-
ting is illustrated in Fig. 2, showing the estimated value
function and the TD error in two cases: received reward and
omitted reward. When the TD error is different from 0, it is
linearly related to the expected reward, and thereby also to
the learned state values.

Dopamine and synaptic plasticity

As dopamine neurons respond in a manner that is congruent
with the TD prediction error signal, it is often suggested
that dopamine serves as a teacher in the cortico-striatal sys-
tem. Since in the neurophysiology literature, ‘learning’ is
generally translated to synaptic plasticity, ‘teaching’ is
attributed to inducing, or at least modulating, synaptic plas-
ticity. Indeed, the cortico-striatal synapses are known to
undergo long-term changes in synaptic efficacy in the form
of long-term potentiation (LTP) (Calabresi etal. 1998;
Reynolds etal. 2001) and long-term depression (LTD)
(Centonze etal. 2001; Kreitzer and Malenka 2005).
Recently, it has also been shown that similar to cortical
(Markram et al. 1997) and hippocampal synapses (Bi and
Poo 1999), long-term plasticity of cortico-striatal synapses
follows the rules of spike-timing dependent plasticity
(STDP) (Shen et al. 2008; Pawlak and Kerr 2008). Further-
more, it appears that dopamine plays a crucial role in cor-
tico-striatal plasticity (Reynolds et al. 2001; Centonze et al.
2001). Induction of LTP in the cortico-striatal pathway
appears to be mediated by activation of dopamine D1/D5
receptors (Kerr and Wickens 2001; Reynolds et al. 2001;
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Fig. 2 The TD-learning algorithm. Schematic timeline of TD-learn-
ing algorithm in a classical conditioning context. Each line represents
a different component of the TD error computation. a With reward
delivery. b With omission of predicted reward. Shaded expected time
of reward

Centonze et al. 2001). LTD is mediated by D2 type recep-
tor activation (Kreitzer and Malenka 2005; Wang et al.
2006; Shen et al. 2008).

In the context of dopamine and synaptic plasticity, there
is an interesting connection to drug abuse. Cocaine and
amphetamines directly increase the amount of dopamine by
inhibiting its reuptake into the synaptic terminals. Opiate
narcotics increase dopamine release by disabling tonic inhi-
bition on dopaminergic neurons. Caffeine increases cortical
levels of dopamine (Acquas etal. 2002). Nicotine also
increases striatal dopamine, probably through the dopa-
mine/ACh interaction (Zhou et al. 2003; Cragg 2006). As
addictive drugs increase dopamine levels, the correspond-
ing altered synaptic plasticity might reflect the neural basis
for drug addiction.

The reinforcement learning hypothesis of dopamine
function relies on a very heavy assumption, namely a dose
dependence of the effect of dopamine (and possibly of other

neuromodulators) on long-term synaptic plasticity. The
notion that dopamine enables reinforcement learning in
cortico-striatal synapses through a TD-learning like mecha-
nism received a strong boost from a number of studies
showing that the phasic responses of dopamine neurons
confirm actual quantitative predictions from the TD model.
The TD error signal evoked by unpredicted rewards or
reward-predicting stimuli is linearly related to the reward
expectancy. This value can be manipulated experimentally,
by either systematically changing the size of the reward or
its probability of occurrence. Experiments of this nature
were performed with primates (Fiorillo et al. 2003; Naka-
hara etal. 2004; Morris et al. 2004, 2006; Tobler et al.
2005; Bayer and Glimcher 2005), and rats (Roesch et al.
2007). These experiments showed that the phasic positive
responses of dopamine neurons exhibit a linear correlation
to the state value.

Although an abundance of previous works demonstrated
a connection between dopamine and reinforcement of
behavior (for review see Wise 2004), their vast majority
was oriented toward the topic of drug dependence. There-
fore, most studies mainly focused on paradigms such as
self-stimulation and self-administration. It was shown that
behavior that leads to the increase in meso-limbic dopa-
mine activity is reinforced. This reinforcement is dependent
on intact dopaminergic transmission (Cheer et al. 2007;
Owesson-White et al. 2008). Other works demonstrated
through lesions that dopamine is indeed necessary for
learning reward-oriented behaviors (Belin and Everitt
2008; Rassnick et al. 1993; Hand and Franklin 1985). It
was also shown that such behavior is paralleled with dopa-
mine-dependent long-term plasticity (Reynolds et al. 2001).
In a recent study (Morris et al. 2006), we also showed that
the dopamine responses are used to shape the behavior of
the monkeys. Finally, a recent ambitious study achieved
learning in vivo through optical activation of dopamine
neurons in a phasic manner (Tsai et al. 2009). These studies
indicate that it is highly likely that these TD error like
responses are indeed used in learning.

However, for this to be translated into physiology, the
effect on striatal plasticity must also scale with the amount
of dopamine released. Therefore, it is essential to perform
in vitro experiments in which the dopamine level is dynam-
ically manipulated, on a time-scale which is consistent with
phasic activation of dopamine neurons. Recently, this ques-
tion was addressed by a detailed theoretical study which
took into account the dynamics of extracellular dopamine
fluctuations (Thivierge et al. 2007). This study predicted
that cortico-striatal plasticity depends on the dopamine
concentration. Low (non-zero) concentrations caused
reverse STDP, while higher concentrations induced regular
STDP, the magnitude of which is concentration-dependent.
To the best of our knowledge, such an effect has not been
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systematically investigated experimentally. Note, however,
that concentration dependence must not necessarily occur
strictly on single synapse level. Rather, a graded effect on
learning could also be achieved through the stochastic
nature of binary processes. It may be that increased levels
of dopamine enhance the probability of each synapse to
undergo a long-term effect, thereby increasing the overall
level of potentiation (or depression) in the appropriate
circuits.

Striatal decoding of reward and aversive dopamine
signaling

Just when the description reward-related activity of dopa-
mine neurons seemed more bullet-proof than ever, several
recent studies (Joshua et al. 2008; Brischoux et al. 2009;
Matsumoto and Hikosaka 2009) found dopamine neurons
that exhibit excitatory responses to aversive stimuli and to
cues predicting aversive stimuli. Obviously, similarity in
responses of dopamine neurons to aversive and rewarding
stimuli poses a serious problem to reinforcement learning
accounts of dopamine function (Schmidt et al. 2009). If
dopamine acts as a neural reward prediction error signal
(Schultz 2002), behavior that leads to punishment should
not be reinforced. Alternative theories of dopamine func-
tion should encounter similar problems with the new
results. Incentive salience accounts for dopamine (Berridge
2007) might have problems explaining why aversive cues
are ‘wanted’. Similarly, the hypotheses that suggest a role
of dopamine for discovering and reinforcing novel actions
(Redgrave and Gurney 2006; Redgrave et al. 2008) limit
their discussion to rewarding and neutral actions. In fact,
only older accounts for dopamine function (Horvitz 2002)
that assign dopamine to a general role in motivation and
arousal (‘activation-sensorimotor hypothesis’ (Berridge
2007) appear to be in line with aversive dopamine
responses.

Separate aversion- and reward-learning circuits?

Although some of the new studies report a clear dorsal/ven-
tral gradient in the existence of excitatory responses to
aversive stimuli, these reports do not seem to be consistent
(compare Brischoux et al. 2009 and Matsumoto and Hiko-
saka 2009). Furthermore, such an anatomical distinction is
not likely to be of much impact, as a considerable fraction
of projections from each dopaminergic structure diverges to
both dorsal and ventral striatal areas (Haber et al. 2000;
Matsuda et al. 2009), implying that signals originating at
each end of the midbrain dopaminergic area will end up
innervating large and spread out regions throughout the
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striatum. Naively, one might propose a solution to the
apparent contradiction between the signals of positive and
negative valence involving a hard-wired mapping of dopa-
mine neurons onto subsets of cortico-striatal connections
representing different actions. In this case, the dopamine
neurons would have to provide differential signals to each
target population. However, this does not seem to be in line
with the anatomical details of this circuit. Rather, the arbor-
ization of dopamine neurons in the striatum supports an
information divergence—convergence pattern. Specifically,
the broad spatial spread and the enormous number of
release sites (~5 x 105) of each dopamine axonal tree,
additionally imposes extremely high convergence on single
striatal projection neurons (Wickens and Arbuthnott 2005;
Moss and Bolam 2008; Matsuda etal. 2009). Volume
transmission (Cragg et al. 2001) of dopamine in the stria-
tum also enforces population averaging of the dopamine
signal on the level of the single target striatal neuron.
Finally, the mechanisms removing dopamine from the syn-
apse are highly unreliable, resulting in exceptionally poor
spatial and temporal precision of the dopamine signal
(Cragg etal. 2000; Venton etal. 2003; Roitman et al.
2004). It is interesting to note in this respect that the low
degree of temporal correlations of the spiking activity of
dopamine neurons (Motris et al. 2004) provides an optimal
substrate for such averaging to yield accurate estimation of
the transmitted signal (Zohary et al. 1994).

Decoding aversion- and reward-related dopamine

Another option that may rescue reward-related dopamine
hypotheses in light of the new results is that the target struc-
tures are able to decode aversive and reward-related dopa-
mine signals. For example, while it is established that
dopamine is released for both rewards and punishments, it
might be that the amount of released dopamine is different.
At least two of the above-mentioned recent studies (Joshua
et al. 2008; Matsumoto and Hikosaka 2009) provide some
evidence for this idea. In both, the excitatory phasic
response to aversive stimuli had a lower firing rate and a
shorter duration than the excitatory response to rewarding
stimuli. Similarly, responses to cues predicting punish-
ments were weaker and shorter than the response to cues
predicting rewards. The difference in duration of the
responses is in the range of 50-100 ms. Furthermore,
although not discussed in these papers, the activity of dopa-
mine neurons following aversive events seems to decrease
below baseline even in those neurons that displayed the ini-
tial bursts. Thus, when population averaging is performed
(as dictated by the anatomy) the dopamine level after
aversive stimuli should be below the level following
rewarding stimuli, and perhaps even below baseline. The
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latter prediction is in line with recent fast-cyclic-voltamme-
try studies (Roitman et al. 2008). We propose that the dopa-
mine signal functions on two distinct timescales: while the
short initial burst reflects arousal level and initiates imme-
diate action, the long-term plasticity effects (learning) are
governed by the average dopamine levels at a more delayed
time period. At this later stage, the phasic dopamine
responses to reward- and aversion-related stimuli lead to
two different dopamine concentrations in the striatum that
have opposite effects on synaptic plasticity at the cortico-
striatal pathways.

Striatal action-learning based on dopamine
concentration

According to the prevailing view of the effect of dopamine
on the direct and indirect pathways, a surge of dopamine
should increase the excitability of D1 MSNs (Go pathway)
and decrease that of D2 (No-Go) MSNss (see Fig. 3a). Thus,
the immediate effect of the initial burst would be to execute
the default action that is connected to the given set of stim-
uli, since it would indiscriminately excite all Go circuits,
and the strongest circuit will be chosen in a winner-take-all
manner. In contrast, the relative strength of the different cir-
cuits is established through long-term learning, which
should be controlled by the second phase of dopamine
signaling.

Learning in the direct and indirect pathways and their
control by dopamine has been previously described (Frank
et al. 2004). According to this model, in D1 Go, MSNs are
the starting points for execution of the actions that will
eventually be chosen. Cells representing more likely
actions in the current state increase their activity. In the D2
No-Go MSNs, actions, which are unlikely in the current
state, show an increase in activity. Reward-related dopa-
mine reinforces current actions in the Go pathway, because
these actions seem to be related to obtaining the reward. At
the same time, the cells representing the same action cells
in the No-Go pathway undergo LTD because these cells
were inactive. Finally, projections to all active cells in the
No-Go pathway (action alternatives that were not chosen)
are potentiated, further decreasing the probability of per-
forming these actions when the animal encounters the same
state in the future. All three changes contribute to reinforce-
ment learning: increase the probability of performing a
rewarded action in a certain situation. In contrast, aversion-
related low levels of dopamine cause L'TD in active cells in
the Go pathway, decreasing the probability of an action that
leads to a punishment. Further, it weakens projections to
active cells in the No-Go pathway. Thereby, these action
alternatives become more likely the next time the animal is
in the troubling situation again.

This simplistic model is somewhat complicated by evi-
dence from cellular neurophysiology. On the neuronal cor-
relate level, aversive learning should translate to inversion
of the temporal aspect of normal Hebbian plasticity, or to
reversal of the STDP rule. Although used in modeling stud-
ies (Bar-Gad et al. 2003; Frank et al. 2007; Thivierge et al.
2007), physiological evidence for this has been lacking.
Aside from one report of inverse STDP in striatal MSNs
(Fino et al. 2005), the temporal aspects of long-term plas-
ticity induction protocols have not been studied until very
recently. It was widely believed, however, that dopamine
was essential for both LTP and LTD (Reynolds et al. 2001;
Centonze et al. 2001). This view was recently refined by
two elegant studies which systematically examined the
question of STDP in cortico-striatal synapses and the
involvement of dopamine in the process (Shen et al. 2008;
Pawlak and Kerr 2008). Both studies revealed that, under
normal conditions, both D1 and D2 type MSNs undergo
long-term plasticity which follows STDP. Moreover, it
appears that adherence to STDP requires activation of
dopamine receptors in an asymmetric manner: glutamater-
gic synapses on D1 (Go circuit) MSNs are potentiated fol-
lowing post-synaptic firing which succeeds pre-synaptic
activation, but only if D1 receptors are activated. LTD is
displayed after the opposite pairing, but this part is dopa-
mine-independent. Similarly, D2 (No-Go circuit) MSNs are
depressed following post-synaptic firing which precedes
pre-synaptic activation, but only if D2 receptors are acti-
vated. LTP is exhibited following the opposite pairing, but
this is again dopamine-independent. Thus, in the absence of
dopaminergic activation, plasticity does not merely disap-
pear, but becomes uni-directional: synapses in Go circuits
can only undergo LTD, while those in No-Go circuits will
only be potentiated.

Figure 3 describes the changes in a hypothetical circuit
with four possible actions connected to a single state fol-
lowing reward-related and punishment-related dopamine
responses. A careful comparison of the two scenarios
depicted in Fig. 3 reveals an interesting feature imposed by
the differential dependence of D1 (Go) and D2 (No-Go)
MSNs on dopamine. Apparently, the only difference
between the ‘Reward’ scenario and the ‘Punishment’ one
relates to the connections of the state to the action that was
taken. This does not mean that other connections do not
change. Rather, these changes are not dopamine-dependent
and therefore are indifferent to the delivery of reward/
punishment.

The difference in dopamine effect on plasticity in Go and
No-Go synapses presents an unexpected answer to another
open question in computational modeling of basal-ganglia
circuits. So far, TD-learning has been described for classi-
cal conditioning situations. However, in settings other than
classical conditioning, an agent acts in order to receive
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Fig. 3 On-policy learning with dopamine. All connections from the
given state to the possible actions that may be taken at that state. S state,
A action, square inhibitory connections (Go circuits expressing D1
receptors), circle excitatory connections (No-Go circuits expressing
D2 receptors). Synaptic strength is represented by line thickness. a
Occurrence of state S1 yields choice of action A1, as its Go connection
is slightly higher and No-Go connection slightly lower than A2-A4. b1
Long-term changes in synaptic strength after receipt of reward for the
choice of Al. The active A1-Go circuit undergoes dopamine-depen-
dent LTP. The non-active A1-No-Go circuit undergoes dopamine-
dependent LTD. We assume that actions A2—A4 were suppressed, and

rewards. Therefore, an action policy has to be learned
which tells the agent how to act in each situation. A number
of extensions to the TD-learning scheme of the classical
conditioning setting have been proposed. In the so-called
Actor/Critic method, the problem at hand is divided
between two dedicated components. The critic is responsi-
ble for value estimation. The action policy is explicitly
stored in an actor element. Both critic and actor use the

@ Springer

therefore the corresponding No-Go circuits were active, and thus un-
dergo dopamine-independent LTP; the non-active Go circuits are de-
pressed (dopamine-independent). b2 Long-term changes in synaptic
strength after receipt of punishment for the choice of Al. Dopamine
level is too low for dopamine-dependent STDP. Therefore, the active
A1-Go circuit undergoes LTD. The non-active Al-No-Go circuit
undergoes LTP; as in b1, actions A2—-A4 were actively suppressed, and
therefore the active corresponding No-Go circuits are potentiated
(dopamine-independent), and the non-active No-Go circuits are de-
pressed (dopamine-independent)

same TD error signal for learning. An alternative class of
algorithms does not involve an explicit representation of
the behavioral policy. Instead, the value function contains
action values rather than state values. In this way, the
optimal policy emerges from comparing the values of
different actions. Algorithms learning action values can be
learned on-policy, i.e., where only the policy that is cur-
rently employed is updated during learning (like SARSA)
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or off-policy (e.g., Q-learning; Watkins and Dayan 1992),
which has the obvious advantage of separation between
what is done and what is learnt. Reducing the basal ganglia
to an action-selection network, the actor/critic architecture
has often been employed to model learning in this frame-
work (Suri and Schultz 1999; Joel et al. 2002). However,
two recent studies that examined the activity of dopamine
neurons in settings that required explicit action selection in
primates (Morris et al. 2006) and rats (Roesch et al. 2007)
suggest that dopamine neurons actually code the error in
value of state-action pairs, rather than state value as would
be expected from an actor/critic learning network. Whereas
the primate results (recorded in the SNc¢) favor the on-pol-
icy approach, the rat results (recorded in the VTA) favor
the more efficient and complicated Q-learning approach.
Since the differential dependence of STDP in Go and No-
Go circuits requires that only taken actions are updated
according to the dopamine signal, action learning in the
basal ganglia must be performed online.

Finally, we would like to note that low levels of dopa-
mine must all be lumped together. As a result, omission of
predicted reward and delivery of an aversive stimulus are
treated in the same manner. However, behaviorally there
seems to be a substantial difference between aversive learn-
ing and reward omission. For example, while aversive
learning is usually very strong and rapid, often occurs
within a single trial and is very difficult to extinguish (Bar-
ber et al. 1998). Extinction of rewards (which is learning
that a CS no longer reliably predicts reward) is much
slower, and the original reward conditioning can easily be
reinstated. Therefore, we propose that there is an additional,
dopamine-independent neural substrate that is dedicated to
aversive learning. Whether this occurs in the same synapses
or in a different structure remains an open question.
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