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Time scales of cortical neuronal dynamics range from few millisec-
onds to hundreds of milliseconds. In contrast, behavior occurs on
the time scale of seconds or longer. How can behavioral time then
be neuronally represented in cortical networks? Here, using elec-
trophysiology and modeling, we offer a hypothesis on how to
bridge the gap between behavioral and cellular time scales. The
core idea is to use a long time constant of decay of synaptic
facilitation to translate slow behaviorally induced temporal corre-
lations into a distribution of synaptic response amplitudes. These
amplitudes can then be transferred to a sequence of action poten-
tials in a population of neurons. These sequences provide temporal
correlations on a millisecond time scale that are able to induce
persistent synaptic changes. As a proof of concept, we provide
simulations of a neuron that learns to discriminate temporal
patterns on a time scale of seconds by synaptic learning rules with
a millisecond memory buffer. We find that the conversion from
synaptic amplitudes to millisecond correlations can be strongly
facilitated by subthreshold oscillations both in terms of informa-
tion transmission and success of learning.
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Time scales of cortical neuronal dynamics are mostly in the range
of few milliseconds to hundreds of milliseconds and are im-
posed on through cellular properties (1, 2), the kinetics of synaptic
transmission (3), and complex connectivity patterns (4). These time
scales are well adjusted to the time window for the induction of
synaptic changes via spike-timing-dependent synaptic plasticity
(5-7), which leads to the hypothesis that synaptic plasticity provides
a means of learning to discriminate and recognize distinct cellular
activity patterns. In contrast to cellular phenomena, the time scales
of behavioral and cognitive phenomena, such as navigation in a
maze or short-term memory, are in the order of seconds or longer.
How to transfer the resulting slow behaviorally evoked temporal
patterns to synaptic long-term changes and enable the formation of
long-term memories is, however, largely unclear.

The present article proposes a new mechanism that uses short-
term synaptic plasticity to encode temporal stimulus properties via
variable amplitudes of synaptic currents. The memory time scales
of short-term synaptic plasticity are in the range from hundreds of
milliseconds to several seconds (8, 9) and thus provide a potential
memory buffer on a behavioral time scale. It is described how the
distribution of synaptic amplitudes resulting from short-term plas-
ticity can be efficiently transferred into a temporal spike code that
represents the slow input patterns. This mechanism thus constitutes
a temporal compression from seconds to milliseconds. Using
experimental and modeling investigations, we demonstrate how the
combination of short-term synaptic plasticity and subthreshold
membrane potential oscillations serves to generate an information-
efficient temporal spike code (cf. ref. 10). For hippocampal CA3
pyramidal cells in vitro, we measure the temporal range of delays
between excitatory postsynaptic currents (EPSCs) and action po-
tentials (APs) varying the amplitude of a simulated synaptic input.
Next, using a computational model, we reproduce the results of the
in vitro approach and calculate how much information about the
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input amplitude is conveyed via AP timing. Finally, we verify that
the proposed mechanism is suitable for learning and decoding in
downstream structures.

Results

Range of Delays Between Simulated EPSCs and APs. Synaptically
induced currents determine the timing of a neuronal APs. In
general, a large excitatory input current elicits a faster increase of
the neuronal membrane potential than a small one. Thus, strong
inputs give rise to shorter spike latencies than weak inputs and,
consequently, the amplitudes of EPSCs are encoded in the timing
of the APs. In this context, we first determined the temporal coding
capabilities of APs triggered by varying EPSC input: For that, we
measured the AP responses of a CA3 pyramidal cell induced by
simulated EPSC sequences with increasing amplitudes (Fig. 1).
These EPSC sequences are to represent the prominent short-term
facilitation of single mossy fiber synapses evoking EPSCs with
amplitudes from few tens of picoamperes to hundreds of picoam-
peres (for EPSC kinetics and amplitudes, see Materials and Methods
and refs. 11-13). In addition to the simulated EPSCs, we imposed
subthreshold oscillations with a frequency of 9 Hz, which is in the
hippocampal theta band (4-12 Hz). Hippocampal theta oscillations
are apparent in the extracellular field potential of freely behaving
animals (14) and are also reflected through oscillations of the
cellular membrane potential in anesthetized (15, 16) and behaving
animals (17). Several repetitions of the stimulus train evoked a
reliable pattern of postsynaptic APs (Fig. 1417). The time delay
between the onset of the EPSC and the postsynaptic AP ranged
from 10.7 = 0.3 ms (mean = SEM) for high EPSC amplitudes to
63 = 2 ms for low EPSC amplitudes (Fig. 1B). For n = 10 cells, the
average time delay between the onset of the EPSC and the
postsynaptic AP ranged from 11 = 2 ms to 63 = 2 ms, providing a
temporal coding range of 51 * 2 ms (Fig. 1CI), which is approx-
imately half of a theta period. The temporal coding range with
subthreshold oscillations is significantly enhanced (z test: P < 10™%)
compared with experiments without oscillations [Fig. 1 in support-
ing information (SI) Appendix].

Determinants of Temporal Coding. Given subthreshold membrane
potential oscillations, the temporal range of AP delays is a result of
the interplay between oscillatory input and EPSC. In particular, the
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Fig.1. Temporal coding range due to variations in EPSC amplitude and subthreshold oscillations. (A7) Voltage traces of a hippocampal CA3 pyramidal cell show
an overlay of 16 repetitions of a current stimulus (Inj. 1) that combines simulated EPSCs of increasing amplitude and an oscillatory current. The amplitude A of
the injected EPSC was set to 300 pA in the first cycle and increased by 20 pA per cycle. The EPSC phase was set to 170° with respect to the subthreshold voltage
oscillations. In this example, the phase of the current oscillation is shifted against that of the voltage oscillation by 50°. (A2) Magnification of cycle 15. At the
input phase s, the simulated EPSC with amplitude A is applied. At the AP phase ®, an AP is elicited. (B) Temporal delays (gray dots) between EPSC onset and AP
in the same cell as in A. The black line depicts the mean delay between EPSCs and APs averaged over amplitude intervals of 0.1 nA. The resulting mean range
of delays (temporal coding range) amounts to approximately half a cycle. (Inset) Single APs evoked by small (cycle 2) and large (cycle 16) EPSCs. (C) Mean delays
(gray lines) averaged over several cells for three different input phases (170°, 140°, and 110°) that are corrected for pooling across cells by a phase shift of 60°
(see Materials and Methods). Black lines depict the population mean. (D) In a schematic model, the temporal AP pattern can be illustrated by the points of
intersection (white circles) between an oscillatory threshold (thick lines) and EPSPs with varying amplitudes. For input phase (dashed line) ¢y = 170° (D7), we expect

a smooth dependence of firing phase on EPSC amplitude, whereas, for = 110° (D3), we expect a gap in the firing phases.

mechanism is sensitive to the oscillation frequency and amplitude,
the input phase s, and the range of amplitudes 4 of the imposed
EPSCs (Fig. 142). In what follows, the oscillation amplitude and
frequency are kept constant at values typically observed during
hippocampal theta oscillations (Materials and Methods and refs.
15-17). Changes in stimulus frequency do not alter the general
outcome (SIFig. 2 in S Appendix). The influence of the input phase
y on the firing phase ® as a function of the EPSC amplitude A is
illustrated in Fig. 1 C and D for three different input phases. An
input phase y = 170° results in only little curvature of the so-called
“transfer function” ®y(A4). The resulting range of delays covers an
interval of ~50 ms. For an earlier input phase of ¢ = 110°, the
transfer function is strongly curved, yet the obtained delay range
amounts to ~70 ms. Temporal encoding of EPSC amplitudes is thus
either almost-linear with a low coding range, or strongly curved with
a large coding range (cf. Fig. 24 and ref. 18).

Although the temporal coding range can be large, the delay
between EPSC and AP is quite reliable given a specific EPSC
amplitude and a specific input phase. The Ap delays from Fig. 1B
have a standard deviation (SD) with respect to the mean delay
(black line) of only 7 ms, which corresponds to ~13% of the
temporal coding range. The root mean square SDs for the group
data in Fig. 1C are 7 ms for y = 170°, 6 ms for ¢y = 140°, and 7 ms
for ¢ = 110°. From these relatively small temporal jitters, we
conclude that AP timing provides substantial information about the
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EPSC amplitude A. However, the transfer function ®y(4) and thus
probably also the amount of transmitted information critically
depend on . Next, we therefore investigate whether a large coding
range (early ) or linearity of the transfer function (late ¢s) is more
beneficial for information transmission.

Transmission of Information from Synaptic Amplitudes to Spike Tim-
ing. To quantitatively assess the impact of the input phase i on the
transmission of information, we measured AP phases ® for 36
different input phases . Fig. 24 depicts the obtained transfer
functions ®yy(A4), using a color code for the phase offset between
postsynaptic AP and EPSC. The transfer functions show a window
of opportunity (between ~100° and 300°) that ensures both a
sufficiently large coding range and an almost linear dependence on
amplitude.

To obtain an efficient noise-free estimate of the transfer function
Dy(A), we applied EPSCs and oscillations to the conductance-
based two-compartment model of a CA3 pyramidal cell by Pinsky
and Rinzel (19) (Fig. 2B and Materials and Methods). The model
accounts well for the experimental phenomenology from Fig. 1, and
it allowed us to determine ®y(A4) as a function of ¢y and A much
more fine-grained (Fig. 2C) than in experiments (Fig. 24). A
comparsion between model and measured phase offsets indicates
good qualitative agreement, especially for input phases iy = 120°.

The mutual information I between EPSC amplitude 4 and spike
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Fig. 2. Information transmission due to variations in EPSC amplitude and
subthreshold oscillations. (A) Phase offsets ® — s (color coded) between AP
phase ® and input phase ¢ obtained from an exemplary experiment (10°
resolution of input phases). (B) An input current (Inj. I) that combines oscilla-
tions and facilitating EPSCs leads to a precession of AP phases in a conduc-
tance-based two-compartment model. Here, EPSCs arrived at a phase angle of
180° after the peak of the subthreshold membrane potential oscillations. (C)
Phase offset obtained from model simulations with a 0.1 :‘—:1‘2 resolution of EPSC
amplitudes and a 2° resolution of input phases resembles the experimental
datain A. (D) Mutual information / between AP phase ® of the model and EPSC
amplitude A reveals optimal mean input phases between ~180° and 270°,
depending on the amplitude statistics p(A). Four distributions p(A) are inves-
tigated: uniform (red), exponential (green), Gaussian (blue), and irregular
(purple). Dashed lines mark amount of transmitted information without
additional subthreshold oscillations. The SD of input times was taken as
30°/360° X 111 ms, which corresponds to a SD of 30° of the distribution p(y)
of input phases for an oscillation frequency of 9 Hz. (E) Maximal information
transmission (black dots) obtained with irregular amplitude distribution and
subthreshold oscillations decreases by ~50% for a 12-fold increase of the SD
(labels) of p(y).

phase ® (see Materials and Methods) was calculated by using the
fine-grained transfer functions ®¢s(A4) from model simulations. The
information I also depends on the distribution p(4) of EPSC
amplitudes. We therefore calculated I for four input distributions of
qualitatively different shapes (Fig. 2D): uniform, exponential,
Gaussian, and evoked by irregular stimulation of the mossy fiber
tract. As can be seen in Fig. 2D, I as a function of mean input phase
i is similar for all four distributions p(A4). Maximum information
transmission, in general, requires late mean input phases ¢ = 200°
that give rise to almost linear transfer functions ®ys(A4). Therefore,
strongly curved parts in ®yi(A4), as obtained for early i, are
disadvantageous for information transmission given generic uni-
modal amplitude distributions. The highest information transmis-
sion we find for the distribution obtained from irregular stimula-
tions of the mossy fiber tract that are motivated by in vivo spike train
statistics of dentate gyrus granule cells (see Materials and Methods
and refs. 20 and 21). The latter amplitude distribution exhibits a
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distinct peak at small amplitude values, at which the transfer
function ®y(A4) has its highest sensitivity. In all cases, the sub-
threshold oscillations considerably enhance the maximum amount
of transmitted information compared with simulations without
oscillations (dashed lines in Fig. 2D).

To check how information transmission depends on the width of
the distribution p() of input phases, we calculated the information
as a function of the SD of p(¢) (Fig. 2E). The maximal information
increases from 2.2 bits per spike at SD = 36° to 4.2 bits at SD = 3°
for the mossy fiber-evoked amplitude distribution. The optimal
mean input phase iy varies between 249° at SD = 3° and 254° at
SD = 12°. Thus, the graph reveals the optimal mean input phase to
be rather insensitive to the width of p(y).

Temporal Compression and Discrimination Between Slow Temporal
Patterns. The transmitted amount of information does not reveal
how useful this information is to a downstream neuronal structure.
As a proof of concept, we investigated the example of a downstream
neuron (e.g., in CAl) that learns to discriminate between patterns
of spike phases of a population of neurons (e.g., in CA3); see Fig.
3. These phase patterns are generated by much slower input
patterns that may, for example, correspond to place-field activity
evoked by a rat‘s path through a maze. In Fig. 34, we show how
synaptic facilitation can be used to compress a temporal pattern of
spikes that are distributed over several seconds and across several
input lines. We assume sparse patterns, i.e., each input line fires only
once, to obtain as few subsecond correlations as possible. The slow
temporal correlations between the different neurons in the popu-
lation are stored in the memory traces provided by synaptic
facilitation with a decay time constant of 5 s, as is known from the
hippocampal mossy fiber synapse (13, 22). Synaptic facilitation,
hence, acts as a short-term memory buffer. This buffer can be
accessed by a readout stimulus, i.e., a synchronous activation of all
input lines in combination with a subthreshold oscillation of the
neurons’ membrane potential. The resulting activity pattern is a
temporally compressed reverse replay of the original pattern. The
slow temporal pattern is thereby transferred to the time span of at
most one oscillation cycle, which is 111 ms in our example (Fig. 34).
The peristimulus time histograms (PSTHs) of the temporal pop-
ulation patterns elicited by the readout stimulus at phase s are
shown in Fig. 3 B and E. Depending on s, the PSTH can be
unimodal for late and early input phases or bimodal for interme-
diate input phases (50° < iy < 200°) (cf. Fig. 1 C and D).

To show how the compressed temporal pattern in a population
of neurons can be discriminated by a downstream neuron (Fig. 3C),
we trained a threshold unit, using the tempotron learning rule by
Giitig and Sompolinsky (23) in the original parameter regime. The
tempotron rule is a supervised learning rule extending the per-
ceptron rule (cf. ref. 24) to the temporal domain (see Materials and
Methods). Whereas the perceptron rule allows to learn a linear
classification task on a set of temporally static patterns, the tem-
potron rule is able to learn a classification task in a spatiotemporal
pattern space as shown in Fig. 34. Because the decay time constant
7 of the downstream EPSP has been identified as a crucial param-
eter for tempotron learning (23), we have conducted computer
simulations for three different values of 7. The success of learning
is illustrated in Fig. 3D, which depicts the percentage of correctly
classified patterns as a function of the input phase . The results
strongly depend on 7. For downstream EPSPs with 7 = 10 ms, the
tempotron rule performs best at an input phase of iy ~ 200°. For
7 = 20 ms, an input phase of ¢ = 130° yields the best, although
moderate, performance. For an even larger decay time constant 7=
30 ms, there is, again, a distinct peak of the percentage of correctly
classified patterns at y = 70°. A closer look at the PSTHs at these
input phases (Fig. 3E) reveals three different paradigms: (i) High
performance is found for flat PSTHs with a width of several times
7 (¢ = 200°, 7 = 10 ms). This case can be considered as the original
tempotron paradigm (23), in which most of the temporal informa-
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Learning to discriminate between temporal patterns on a time scale of seconds. (A) Schematic illustration of temporal compression through synaptic

facilitation. (Left) A temporal spike pattern (vertical bars) from a population of seven afferents on a time scale of seconds. The temporal pattern is preserved
in the memory traces provided by the decay of synaptic facilitation (gray areas). (Right) Readout stimulus (dashed line) in combination with subthreshold
oscillation evokes a reverse replay of the pattern in the seven neurons (vertical bars). Note different temporal scale bars for temporal pattern (Left) and reverse
replay (Right). (B) Depending on the input phase ¢ of the readout stimulus, the compressed population patterns show distinct phase distributions (gray-scale
PSTHs). (C) A downstream threshold unit (e.g., in CA1) with adjustable synaptic weights learns to discriminate between temporally compressed phase patterns
of a population of neurons (e.g., in CA3). (D) Fraction of correctly classified patterns after 100 learning cycles (mean =+ SEM, n = 50 simulations) reveals an optimal
input phase iy that depends on the decay time constant 7 of the downstream EPSP (gray levels depict different values of 7). Dashed lines indicate fractions of
correctly classified patterns for simulations without subthreshold oscillations. Standard errors for dashed lines are all smaller than 0.7 %. (E) Exemplary PSTHs from
B for input phases ¢y = 70°, 130°, and 200° (dashed lines), which yield best learning performance for the different time constants r from D. (F) Adding a jitter (SD
30°) to the phase of the readout stimulus reduces performance of learning. Dashed lines are the same as in D, because there is no phase jitter without an

oscillation.

tion is conveyed via the decaying slopes of the EPSPs. (i) Learning
can be moderately successful if the PSTH reveals a single peak that
is narrower than the EPSP (¢ = 130°, 7 = 20 ms). In this regime,
the learning rule thus also extracts temporal information from the
rising slope of the EPSP. (i) Finally, successful learning occurs for
bimodally peaked PSTHs (¢ = 70°, 7 = 30 ms). In this case the
temporal domain of the input pattern can be considered to be
divided into two intervals (corresponding to high and low synaptic
amplitudes) with peaked unimodal PSTHs each. As in the previous
case, the temporal information with the two subgroups is again also
conveyed via the rising slopes of the EPSPs.

In a final series of simulations, we jittered the phase of the
readout stimulus (Fig. 3F). There, the general dependence on input
phase is preserved compared with the noiseless case, although the
peak performances are strongly reduced. Interestingly, the moder-
ate performance peaks for a unimodal PSTH (¢ = 130°) are almost
unchanged.

To summarize, the success of the tempotron rule strongly de-
pends on properties of the downstream neuron such as the decay

4420 | www.pnas.org/cgi/doi/10.1073/pnas.0708711105

time constant 7 of the EPSP. Moreover, using a model without
subthreshold oscillations the success of learning is much smaller
(dashed lines in Fig. 3 D and F). Thus, subthreshold oscillations that
increase the temporal coding range can improve or, as in the present
example, may even be inevitable to enable learning.

Discussion

The present article elucidates how short-term synaptic plasticity can
contribute to the temporal compression of slow behaviorally in-
duced temporal patterns. The core idea is to map the temporal
input pattern to a pattern of EPSC amplitudes. The memory time
constant of synaptic short-term plasticity thereby determines the
time window over which the slow temporal patterns can extend. To
obtain a broad (high entropy) distribution of EPSC amplitudes, the
interval distribution of presynaptic inputs has to match the time
constant of short-term plasticity. Subthreshold oscillations with a
period much shorter than the memory time scale of short-term
plasticity have been used to efficiently translate the synaptic am-
plitudes into a temporal sequence of action potentials in a popu-
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lation of neurons. This temporal sequence of APs provides tem-
poral correlations on a shorter time scale, which are suitable to
trigger long-term synaptic plasticity and learning.

In vitro experiments and a computational model reveal that the
major contribution of subthreshold oscillations is to considerably
increase the range for temporal encoding (Fig. 1 and SI Appendix,
Fig. 1), and that the input phase i of the synaptic currents is a crucial
parameter. For late input phases ¢y ~ 180°, the AP (firing) phase is
an only slightly curved function of the EPSC amplitude A, whereas
for early input phases ¢y = 120° this transfer function is strongly
curved (Fig. 1 C and D). However, late input phases provide a
smaller possible range of temporal coding than early input phases,
because the AP phases are confined to the interval between the
input phase and the peak of the subthreshold oscillation at 360°. We
find that EPSC amplitude information is best transformed into the
phase of hippocampal CA3 pyramidal cell APs if the mean input
phase is ~250° (Fig. 2). The transmission of information is partic-
ularly high if we use EPSC amplitude statistics evoked by irregular
in vivo-like activity patterns. In a further set of computer simula-
tions, we have shown that a downstream neuron in CA1 can learn
to discriminate between the temporally compressed spike patterns
of a population of model CA3 pyramidal cells (Fig. 3). As an
example for temporal compression, we have considered oscillations
with a period of 111 ms and facilitation time constants of several
seconds. These time scales match the typical period of hippocampal
theta oscillations (4-12 Hz) (14) and the decay of facilitation at the
mossy fiber synapse (13, 22), respectively. The long synaptic time
scale provides a substrate for encoding behavioral events. Sub-
threshold theta oscillations allow a temporal compression to a much
shorter time scale that is suitable to induce long-term synaptic
changes. As with information transmission, subthreshold mem-
brane potential oscillations also improve the performance of learn-
ing. However, whereas optimal information transmission requires
EPSC inputs at phases that mostly avoid the strongly curved parts
of the transfer function ®ys(A4) (Fig. 2D), these parts can be helpful
for learning. The input-phase dependence of learning is strongly
modulated by EPSP decay time constant of the downstream
neuron. In general, successful learning requires the downstream
EPSP to be adjusted to the PSTH of the population pattern. The
results on optimal input phases for learning are thus not generic, in
the sense that they are derived for a specific learning paradigm with
a given kinetics of the EPSPs, a given period length and shape of
the subthreshold oscillation (10), and a given realization of the
learning algorithm (23). Nevertheless, these results provide an
example in which an optimal temporal code more strongly depends
on downstream neuronal properties than on maximizing the trans-
mission of information.

The temporally compressed firing pattern in the population of
CA3 cells occurs in reversed order compared with the slow original
one. This reversal is independent of whether the replay occurs with
or without subthreshold oscillations. Interestingly, such reverse
replay of place field activity in the hippocampus was predicted by
Buzsaki (31) and recently also experimentally confirmed (32, 33).
If this hippocampal reverse replay was a result of mossy fiber
synaptic facilitation, our model predicts that instances of reverse
replay should be temporally correlated with synchronous readout of
the state of facilitation—the synaptic memory buffer—of a large
number of mossy fiber synapses, as indicated by the dashed lines in
Fig. 3A4. This would correspond to the synchronous activation of a
large fraction of the presynaptic dentate gyrus granule cells.

The firing pattern generated by facilitating inputs as shown in Fig.
1 is similar to hippocampal phase precession (25-29) if we associate
the EPSC amplitude with the animal’s place on a linear track.
Synaptic facilitation of mossy fiber synapses at the interface be-
tween dentate gyrus and hippocampal CA3 pyramidal cells might
thus provide an explanation for hippocampal phase precession (18).
The underlying mechanism may principally apply to all synapses
exhibiting short-term facilitation, as, e.g., in the entorhinal cortex
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(30). In addition to facilitation of excitatory synaptic transmission,
short-term depression of inhibitory inputs results in a net increase
of postsynaptic current amplitudes and, therefore, could account
for the same phenomenon.

Besides theta—frequency oscillations, oscillations at higher fre-
quencies, e.g., in the gamma range (34), with a period of tens of
milliseconds could produce temporal codes if combined with
short-term synaptic plasticity with memory time constants in the
range of several hundreds of milliseconds. The latter time scale
corresponds to short-term synaptic plasticity as reported for neo-
cortical neurons (35, 36) and hippocampal CAl pyramidal cells
(37). Hence, the proposed mechanism is a temporal compression
device mapping input correlations from any time scale of dynamical
synaptic transmission to spike correlations on a time scale of the
respective oscillation cycle.

Materials and Methods

Slice Preparation and Recordings. Hippocampal slices were obtained from 15- to
26-day-old Wistar rats. Preparation and recordings were done following standard
procedures described in S/ Methods in SI Appendix.

Simulated EPSCs and Oscillations. In the current-clamp experiments shown in
this article, CA3 pyramidal cells were held at membrane potentials between —55
and —48 mV (junction potential ~10 mV not corrected) by positive current
injection. These values are in about the same range as the resting potentials of
CA1 pyramidal cellsin vivo (17). We applied artificial EPSCs lsyn(t) = A [exp(—t/T1) —
exp(—t/r)] O(t) that approximate the kinetics described for EPSCs in CA3 pyra-
midal cells evoked by putative single mossy fiber stimulation (11, 12), using a rise
time of 7, = 1.5 msand a decay time of 1 = 10 ms. The amplitude A of the artificial
EPSC takes different values depending on the state of dynamical synaptic trans-
mission. The current amplitudes A are varied between 0 and 600 pA, which
corresponds to about the range of mossy fiber currents (12, 13). The function O(t)
denotes the Heaviside step function, 6(t) = 1 for t = 0, and O(t) = 0 otherwise.

In addition to EPSCs, subthreshold membrane potential oscillations were
induced by the current input los(t) = I1 cos(2mfyt), in which the theta frequency
was chosen as fy = 9 Hz, a typical value observed in freely behaving rats (14). The
amplitude /; was adjusted (from 40 to 120 pA) such that the amplitude of the
subthreshold membrane potential oscillation was ~5 mV, similar to values re-
corded in anesthetized and freely moving animals (15).

Definition of AP Phases. The phase ® of the postsynaptic APs was measured
relative to the peaks of the membrane potential oscillations. These peaks were
determined from an average of five oscillation cycles without additional EPSCs.
Thus, phase zero corresponds to the maximum of the intracellular membrane
potential oscillation, which, in the hippocampus, coincides with the trough of the
in vivo extracellular local field potential in stratum pyramidale (14).

From n = 21 applications of stimulation protocols with combined oscillatory
and EPSC currents, we determined a phase shift of 62 + 8° (mean = SD) between
current oscillation /osc and membrane potential oscillations. Each protocol con-
tained at least 10 repetitions of the stimulus. Whenever we had to pool phase
data over several cells (Fig. 1 Cand F), we corrected input and firing phases with
a constant phase shift of 60°.

Irregular Mossy Fiber Stimulation. The distribution of mossy fiber response
amplitudes as used in Fig. 2D was determined as follows: The mossy fiber tract in
hippocampalsslices of postnatal day (P)21-P35 mice was extracellularly stimulated
by using a saline-filled, low-resistance patch pipette positioned in the granule cell
layer or hilar region. Stimulation was irregular and resembled the statistics of
natural spike trains from dentate gyrus granule cells (20, 21). Stimulus trains
followed an interstimulus interval (ISI) distribution where the probability of an ISI
was proportional to 1/ISI with minimal, median, and maximal ISIs of 50 ms, 1.5s,
and 50 s, respectively. The resulting postsynaptic responses were recorded in
whole-cell voltage-clamp configuration of CA3 pyramidal cells at a holding
potential of —60 mV performed at room temperature. Comparable dynamics
were measured by using field potential recordings both at room temperature
and at 34°C (see ref. 13). The distribution shown in Fig. 2D is derived fromn = 6
cells.

Mutual Information. The sensitivity of the AP phase ® on changes of the EPSC
amplitude A is quantified by the mutual information
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between ® and A. We therefore require a model of the amplitude distribution
p(A) and the conditional probability p(®|A) of having ®, given A. The latter
distribution is obtained through p(®|A) = [ dyp()s(® — DyfA)), in which the
phase transfer function ®y{A) is derived from the two-compartment model (19)
(see Fig. 2). The distribution p(i) of input phases is assumed to be Gaussian with
mean phase . Unless stated otherwise, the standard deviation of p(i) was set to
the exemplary value of 30°. The minimal and maximal EPSC amplitudes were
Anmin=0 fz and Anax = 14 i‘—r:z, respectively.

Model. Computer simulations made use of a two compartment neuron model of
a CA3 pyramidal cell by Pinsky and Rinzel (19). The model consists of asomatic and
a dendritic compartment. The somatic compartment contains the standard
Hodgkin-Huxley-type inactivating sodium and potassium delayed-rectifier cur-
rents. The dendritic compartment contains a calcium current, a potassium-
mediated slowly activating afterhyperpolarization (AHP) current, and a fast
activating potassium-mediated current, the saturation of which is calcium-
dependent. The model has been extensively studied (e.g. ref. 38) and can be
considered as one of the standard models for CA3 pyramidal cells.

The external currents applied to the model have the same shape as /osc and Iy,
in the electrophysiological recordings (see Simulated EPSCs and Oscillations). The
amplitude of the oscillatory currentwas /1 = 2— resulting in an amplitude of =5
mV for the membrane potential oscillation. The firing threshold was adjusted by
an additional application of a constant current of lp = —0.3 2 £, to prevent firing
for EPSP amplitudes A = 0. For simulations without subthreshold oscillations
(dashed linesin Fig. 2D), we chose /y =0and lp = —2.3%= A Whlch lead to amaximal
delay of 70 ms between EPSC onset and AP. The model was implemented in C
programming language. Integration was performed by using a fourth-order
Runge-Kutta algorithm with adaptive step size (39).
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Temporal Pattern Learning. \We have defined 200 firing patterns of a population
of 200 input lines such that each pattern contains one event (spike or burst) per
input line occurring independently at random times £ (n = 1, . . ., 200) in the
interval between 0 and 10 seconds. Each input event triggers the maximal
facilitation Amax = 14"— of the synapse connected to the specific input line. The
facilitation f,, then decays exponentially with a time constant 7 = 5 seconds (Fig.
3A). To read out the states of facilitation, all synapses are simultaneously acti-
vated at a phase angle s with respect to an additional subthreshold oscillation
with period 111 ms. The larger the delay between an input event and the readout
stimulus, the smaller is the value of the facilitation f, of the synapse at the time
of readout. The readout stimulus therefore triggers a reverse replay of the
pattern, and the replayed pattern is temporally compressed. The AP phases are
obtained from the transfer function ®y(A = f,,) depicted in Fig. 2C. The reversed
and compressed pattern is then conveyed to a threshold unit and there elicits
standardized EPSPs w,, (e~t" — e~¥=) (for t = 0) with a membrane time constant
7, a synaptic time constant = = /4, and a synaptic weight w,.

Half of the above patterns were randomly classified as ““+" patterns, the
others are termed ""—"' patterns. The synaptic weights are trained via the tem-
potron learning rule (23) such that the threshold unit emits a spike for + patterns
and does not fire for — patterns. Unless stated otherwise, all parameters were
taken as proposed by Guitig and Sompolinsky (23). In particular, in each learning
cycle, all patterns were presented in the same order. Learning was stopped when
100% of the patterns were classified correctly or when the maximal number of
learning cycles (here 100) was exceeded. Simulations were run for different EPSP
time constants = and different input phases ¢ of the readout stimulus. We
repeated simulations 50 times for each set of parameters. For the simulation
results shown in Fig. 3D, the phase i of the readout stimulus was drawn from a
normal distribution with mean ¢ and standard deviation of 30°.
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