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a  b  s  t  r  a  c  t

When  a rat  crosses  the  place  field  of a hippocampal  pyramidal  cell,  this  cell  typically  fires  a series  of  spikes.
Spike  phases,  measured  with  respect  to  theta  oscillations  of  the  local  field  potential,  on  average  decrease
as  a function  of  the  spatial  distance  traveled.  This  relation  between  phase  and  position  of  spikes  might  be
a neural  basis  for  encoding  and is called  phase  precession.  The  degree  of  association  between  the circular
phase  variable  and  the  linear  spatial  variable  is  commonly  quantified  through,  however,  a linear–linear
correlation  coefficient  where  the  circular  variable  is  converted  to a linear  variable  by restricting  the
phase  to  an arbitrarily  chosen  range,  which  may  bias  the  estimated  correlation.  Here  we  introduce  a new
measure  to  quantify  circular–linear  associations.  This  measure  leads  to  a robust  estimate  of  the  slope
and phase  offset  of  the  regression  line,  and  it provides  a correlation  coefficient  for  circular–linear  data
that is  a  natural  analog  of  Pearson’s  product-moment  correlation  coefficient  for  linear–linear  data.  Using
ircular–linear regression surrogate  data,  we  show  that the  new  method  outperforms  the  standard  linear–linear  approach  with
respect  to estimates  of  the  regression  line and  the  correlation,  and  that  the  new  method  is less  dependent
on noise  and  sample  size.  We  confirm  these  findings  in  a large  data  set  of experimental  recordings  from
hippocampal  place  cells  and theta  oscillations,  and  we  discuss  remaining  problems  that  are  relevant
for  the  analysis  and interpretation  of phase  precession.  In summary,  we  provide  a new  method  for  the
quantification  of circular–linear  associations.
. Introduction

Phase precession is a relational code that is thought to be impor-
ant for animals to learn a sequence of places, and, in general, phase
recession might be a basis for episodic(-like) memory (Skaggs
t al., 1996). In the hippocampus, the position of an animal in its
nvironment is encoded through activity of so-called place cells.
heir action potentials exhibit a precession of firing phases relative
o theta oscillations in the local field potential (4–12 Hz; Buzsáki,

002), and in successive oscillation cycles, the theta phase of action
otentials of a pyramidal cell progressively decreases toward ear-

ier phases (O’Keefe and Recce, 1993). Besides the hippocampus,
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phase precession also exists in the entorhinal cortex (Hafting et al.,
2008; Mizuseki et al., 2009; Reifenstein et al., 2012). The mecha-
nisms underlying the generation of phase precession are unknown
despite considerable experimental and theoretical work to unravel
its origin (e.g., Skaggs et al., 1996; Jensen and Lisman, 1996; Tsodyks
et al., 1996; Wallenstein and Hasselmo, 1997; Kamondi et al., 1998;
Ekstrom et al., 2001; Harris et al., 2002; Mehta et al., 2002; Lengyel
et al., 2003; Huxter et al., 2003; Hasselmo and Eichenbaum, 2005;
Lisman et al., 2005; Zugaro et al., 2005; Dragoi and Buzsáki, 2006;
Cheng and Frank, 2008; Thurley et al., 2008; Leibold et al., 2008;
Harvey et al., 2009; Geisler et al., 2010; Losonczy et al., 2010).

Basic properties of phase precession are the slope and the
offset of a regression line as well as the correlation coefficient
between the theta phases and the spatial locations at which spikes
occur. These characteristic properties of phase precession allow
for a comparison across trials, cells, animals, and species, and also
to computational models. A fair comparison, however, requires
appropriate methods to measure these properties.
Phase precession describes the relation between a linear vari-
able (usually animal position) and a circular variable (spike theta
phase). Nevertheless, this relation is commonly quantified through
a linear–linear regression (slope and offset) and a linear–linear

dx.doi.org/10.1016/j.jneumeth.2012.03.007
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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orrelation coefficient (e.g., O’Keefe and Recce, 1993; Mehta et al.,
002): the circular variable is simply converted to a linear one by
estricting the phase to a predefined range. However, such a restric-
ion is artificial. As we will show, for such linear–linear correlations,
he sample estimates of basic properties of phase precession are
iased and depend on the sample size.

Phase precession is a specific example of circular–linear data.
he goal of linear regression in such a case is predicting the circular
ariable given the linear variable. A procedure for circular–linear
egression and a correlation measure with well-defined prop-
rties are not available. What is available, on the one hand, is
he classical Pearson product-moment correlation coefficient for
inear–linear data, and, on the other hand, correlation coefficients
or circular–circular data (Fisher, 1995; Zar, 1999; Jammalamadaka
nd SenGupta, 2001).

Here we develop a new method to quantify circular–linear asso-
iations. We  show that this measure is robust with respect to
oise and small sample sizes, and only weakly depends on prior
nowledge on the data. We  derive a correlation coefficient for
ircular–linear data that is a natural analog of the product-moment
orrelation coefficient for two linear variables; that is, the two
orrelation measures share as many features as possible and are
dentical in limiting cases. The new measure can be used to quantify
hase precession as well as other circular–linear data.

. Materials and methods

Our method is demonstrated on experimental data that has been
sed in several previous studies (Diba and Buzsáki, 2007, 2008;
chmidt et al., 2009) in which experimental procedures have been
escribed in detail. Briefly, three male Sprague-Dawley rats were
rained to run back and forth on a linear track to retrieve water
ewards at both ends. All protocols were approved by the Institu-
ional Animal Care and Use Committee of Rutgers University. After
earning the task, the rats were implanted with silicon probes in
he left dorsal hippocampus under isoflurane anesthesia. The sili-
on probes were lowered to CA1 and CA3 pyramidal cell layers. For
his study, all units and the local field potential were taken from
A1 recording sites. In contrast to the previous studies, here we
id not exclude spikes that occurred near reward sites located at
latforms at the two ends of the linear track, and we did not exclude
ells without phase precession. However, spikes were excluded if
he instantaneous running speed was smaller than 10 cm/s. In addi-
ion, spikes from single crossings of the place field in which the
verage running speed was smaller than 10 cm/s were excluded.
sing only a running speed criterion to select spikes, place fields

hat extended into the reward sites entered the analysis while
pikes that occurred during rest periods with non-theta states were
evertheless excluded.

. Results

To quantify phase precession, we first motivate the main idea
ehind our new procedure and state the essential results in Eqs.
1)–(4).  The justification of this approach as well as the derivation
f the equations and further details are provided in Appendix A.

To outline the basic recipe for applying the new quantification,
et us assume that there are n action potentials and that each action
otential is characterized by a phase angle �j and a linear spatial
osition xj for j = 1, . . .,  n. We  further assume that the association

etween phase and position can be described by a linear model of
he form �̃j = 2� a xj + �0, where a is the slope (in units of cycles
er length scale) and �0 is the phase-offset. The angle �̃j can then
e considered as the prediction of �j from the measurement xj.
ce Methods 207 (2012) 113– 124

The parameters a and �0 of the regression line that represents
the data best are found by minimizing the error between the mea-
sured angles �1, . . .,  �n and the predicted angles �̃1, . . . , �̃n. To
account for the circular nature of phase, we use a circular error
measure. The circular distance d between two angles �j and �̃j is
defined as (Lund, 1999)

d(�j, �̃j) = 2[1 − cos(�j − �̃j)].
The slope parameter a of the regression line can be found by min-
imizing the mean circular distance. In Appendix A.1 we  prove that
this minimization is equivalent to maximizing the mean resultant
length R (or vector strength) of the residual distribution (FitzGerald
et al., 2001),

R =

√√√√√
⎡
⎣1
n

n∑
j=1

cos(�j − 2� a xj)

⎤
⎦

2

+

⎡
⎣1
n

n∑
j=1

sin(�j − 2� a xj)

⎤
⎦

2

.

(1)

One should note that R is independent of the phase offset �0.
The maximization of R with respect to the slope a, which usually
demands numerical methods, leads us to the estimate of the slope,
â = arg max

a
R on a cylinder is never unique, a restriction of the range

of possible slopes is necessary and can be implemented through
constraining â to some interval during the numerical optimization
procedure.

To estimate the phase offset �̂0, we plug â into

�̂0 = arctan∗
∑

j sin(�j − 2� â xj)∑
j cos(�j − 2� â xj)

(2)

where the function arctan∗ is the quadrant-specific inverse of the
tangent; see Eq. (A.6).

Finally, we  calculate the circular–linear correlation coefficient
(Jammalamadaka and SenGupta, 2001)

�̂c =
∑n

j=1 sin(�j − �) sin(�j − �)√∑n
i=1[sin(�i − �)]2∑n

j=1[sin(�j − �)]2
(3)

where the important new point is to convert the linear variable xj
into a circular variable �j = 2� |â| xj (mod 2�) that is scaled by the

estimated slope â; we note that � and � are circular sample mean
values given by

� = arctan∗
∑

j sin(�j)∑
j cos(�j)

and � = arctan∗
∑

j sin(�j)∑
j cos(�j)

.  (4)

For large sample sizes, p-values can be derived, as outlined in
Jammalamadaka and SenGupta (2001) and Appendix A.2.

The properties of this new approach to estimate the slope â,  the
offset �̂0, and the degree of association �̂c between a linear variable
X and a circular variable ˚, are illustrated in Fig. 1 using surrogate
data. There, first samples from a zero-mean bivariate Gaussian dis-
tribution in X and Y are generated at some correlation �. Then Y
is wrapped around the circle to create a circular variate, that is,

 ̊ = Y (mod 2�). As a result, X and  ̊ can be thought of as data lying
on a cylinder. Such surrogate data provide a simple phenomeno-
logical model of phase precession.

3.1. Comparison of circular–linear and linear–linear regression
We now quantify the surrogate data in Fig. 1 using the new
circular–linear as well as common linear–linear approaches. Note
that in the figures angles are plotted in units of degrees (0◦, . . .,
360◦, . . .,  720◦) to allow for a better comparability to the literature.
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Fig. 1. Three approaches to quantify circular–linear associations. Circular–linear surrogate data (black dots) are zero-mean bivariate Gaussian in X and Y, and the variate Y
is  wrapped around the circle to generate the circular variate  ̊ = Y (mod 360◦). Two  cycles of  ̊ in units of degrees are shown. Colored lines indicate linear regression lines.
(A)  The circular–linear fit leads to a slope â = −0.46 (in cycles per unit on the X axis) and an offset (i.e. the phase of the regression line at X = 0) �̂0 = −8.3◦ . The interval of
possible  slopes for the fit was [− 50, 50]. (B) Linear–linear fit in the selected white region: the data cylinder was cut horizontally at �cut = 180◦ (mod 360◦) (dashed lines). We
find â =  −0.17 and �̂0 = −0.6◦ through standard linear–linear regression. (C) Linear–linear fit in the selected white region: the data cylinder was  cut diagonally at phase
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cut = 180◦ (mod 360◦) and slope acut = − 0.50 (dashed lines). We  find â = −0.47 and
n  one cycle; the parameters of the wrapped bivariate Gaussian distribution (see Ap
uality of the estimates, we note that the expected slope is −0.51 (from Eq. A.15) an

.1.1. Circular–linear approach
In Fig. 1A, the regression line is the result of minimizing the sum

f circular distances between data and a linear prediction, as out-
ined in Eqs. (1) and (2).  The regression line matches the data well.
o derive these results, no prior knowledge on the data is neces-
ary (parameter-free approach), apart from restricting the possible
lopes to a range of reasonable values.

.1.2. Linear–linear approaches
Two common other approaches to the same problem of

ircular–linear regression are illustrated in Fig. 1B and C. There, the
ata cylinder is cut at some line and unwrapped: the circular vari-
ble  ̊ is treated as if it were a linear one. Accordingly, linear–linear
east squares regression is performed on data points in the selected

hite regions.
In Fig. 1B, the data cylinder is cut horizontally at phase �cut, and

he cylinder can be reconstructed by joining the two  dashed lines.
ere, we have chosen �cut = 180◦, which is the best choice given the
nderlying zero-mean Gaussian distribution of the surrogate data.
owever, even under this condition, the regression line in Fig. 1B
oes not represent the data satisfactorily. The slope is underesti-
ated because points in the lower left and upper right corner of

he white region provide a strong bias.
Underestimation of the slope is a general problem with a hor-

zontal phase cut-off, although there is some freedom in choosing
cut: Zugaro et al. (2005) defined it as the circular mean phase of
pikes shifted by 180◦; in other studies, �cut was defined through
aximization of the explained variance of a linear model (Mehta

t al., 2002; Foster and Wilson, 2007; Brun et al., 2008; Cheng and
rank, 2008; Hafting et al., 2008; Mizuseki et al., 2009, 2012). This
aximization is mostly done using discrete phase steps, for exam-

le in 1◦ steps (Brun et al., 2008; Hafting et al., 2008; Mizuseki et al.,

009, 2012) or in 10◦ steps (Foster and Wilson, 2007).

Some of the problems created by a horizontal cut of the cylin-
er might be resolved by a diagonal cut (O’Keefe and Recce, 1993;
uxter et al., 2003, 2008; Dragoi and Buzsáki, 2006; Ego-Stengel
 −7.7◦ . In (A), (B), and (C), we show the same data sample with n = 300 data points
ix A) are � = − 0.8, �X = 0.5, �Y = 2 rad, �X = �Y = 0. To be able to further evaluate the

 expected offset is 0◦ .

and Wilson, 2007; Lenck-Santini and Holmes, 2008), as in Fig. 1C.
There, the regression line fits the data well. However, this approach
requires fixing two  free parameters of the model, namely the phase
offset �cut and the slope acut of the line cutting the cylinder, which
were chosen arbitrarily in Fig. 1C. In some studies, the cut parame-
ters were again found by maximization of the explained variance;
for example, Lenck-Santini and Holmes (2008) and Huxter et al.
(2008) used an iterative approach with a limited number of steps
for the unwrapping process.

3.2. Comparison of correlation measures

To verify the strengths and weaknesses of the three approaches
outlined in Fig. 1, we next estimate correlations and evaluate the
circular–linear and the linear–linear approaches in terms of robust-
ness to noise, dependence on sample size, computational cost, and
requirement of prior knowledge on the data.

3.2.1. Circular–linear approach
In our circular–linear approach, a range of slope values a is

tested. The best-fitting slope â is the one that maximizes the mean
resultant length R as defined in Eq. (1).  Fig. 2A shows R as a function
of a for the data presented in Fig. 1. There is a unique and distinct
absolute maximum for a wide range of slopes. Finding the max-
imum is possible with standard numerical methods because R is
continuous and differentiable.

Fig. 2B indicates how the circular–linear correlation coefficient
�̂c depends on noise, which is parameterized by the correlation
coefficient � of the underlying Gaussian model of the surrogate
data. The estimates �̂c (dots) for a finite amount of data (here:
n = 300 for each dot) are represented well by the expected values
�c (black solid line). The expected value �c is equal to the estimate

�̂c for an infinite number of data points (n→ ∞);  see also Eq. (A.20)
in Appendix A.

How does the expected correlation �c depend on the parameter
� of the underlying Gaussian model? The functions �c(�) in Fig. 2B
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Fig. 2. Circular–linear regression and correlation measure. (A) Mean resultant
length R (black line) according to Eq. (1) as a function of the slope a of the regression
line  for the same surrogate data as in Fig. 1. The vertical dashed line at the maxi-
mum  of R marks the best slope â = −0.46 with R(â) = 0.47. The gray line denotes
the expected R from Eq. (A.14),  matching the sample estimate well. The inset indi-
cates sample estimates of R for a wider range of slopes, illustrating that the interval
of  possible slopes is not critical here. (B) Relation between the actual correlation �
of the underlying bivariate Gaussian model and the circular–linear correlation. Red
dots  are sample estimates �̂c for �Y = 2 and n = 300, and the solid black line denotes
the  expected values �c from Eq. (A.20).  The two gray lines are expected values �c

for �Y = 1, which is close to the identity, and �Y = 3, which is highly nonlinear. (C)
Dependence of �̂c (red dots) on the sample size n for � = − 0.8, �X = 0.5, and �Y = 2.
The  horizontal solid line indicates the expected value �c = − 0.49. Black dots are
mean values of surrounding 30 data points, and bars denote the standard error of
the mean. In (B) and (C), dotted lines mark zero correlations. Here, and throughout
t
2
r

(
i
a
�
t

he  rest of the paper, the range of possible slopes was  restricted to the interval [− 2,
].  (For interpretation of the references to color in this figure legend, the reader is
eferred to the web  version of this article.)

one black and two gray solid lines) are monotonous so that there

s a unique and invertible, though nonlinear, mapping between �
nd �c. The degree of nonlinearity of �c(�) depends on the variance
2
Y of the Gaussian model. For �Y = 1 (in units of rad), we  are close to
he identity � = �c, which becomes exact in the limiting case �Y → 0.
ce Methods 207 (2012) 113– 124

This behavior is one reason why  �c is a natural analog of the Pear-
son product-moment correlation coefficient, although, in general
we have |�| > |�c|. The function �c(�) markedly deviates from the
identity if the width of the Gaussian exceeds one cycle, which is the
case for �Y � 1.5.

Finally, in Fig. 2C, the efficiency of �̂c as a function of the sample
size n points to a well-behaved estimator. For small sample size,
however, there is a systematic underestimation of the expected
absolute correlation, and the variability is large.

3.2.2. Linear–linear approaches
Fig. 1B exhibits a common linear–linear approach to quantify-

ing circular–linear data. There, the data cylinder is cut horizontally
at some phase �cut. The specific value of the parameter �cut deter-
mines the estimated linear correlation �̂, as indicated in Fig. 3A.
Therefore, the free parameter �cut needs to be fixed. Here and in
many other applications (e.g., Mehta et al., 2002; Foster and Wilson,
2007; Brun et al., 2008; Hafting et al., 2008; Mizuseki et al., 2009),
�cut is defined as the phase that maximizes | �̂|.

There are several weaknesses associated with this approach.
First, finding extrema of �̂ is numerically inconvenient because
�̂(�cut) is a piecewise constant and discontinuous function, and
efficient standard algorithms for finding extrema, which rely on
gradients, fail. Note that the function �̂(�cut) is discontinuous at
the measured phases �j for j = 1, . . .,  n, producing up to n disconti-
nuities, resulting in a rough graph as in Fig. 3A. In particular, adding
or removing data points might lead to large fluctuations of the
maximum of | �̂| and the resulting �cut. Moreover, the estimated
correlation �̂(�cut) in Fig. 3A not only has a minimum but also a
maximum (see also Hafting et al., 2008; their Supplemental Fig.
10a), adding another difficulty for robustly identifying the maximal
modulus | �̂|.

Another weakness of the linear–linear approach is illustrated in
Fig. 3B, which indicates how the estimated correlation coefficient
�̂ depends on the correlation parameter � of the underlying Gaus-
sian model of the surrogate data. The estimates �̂(�) are mostly far
from the identity. This behavior is most striking for the case � = ± 1,
where �̂ underestimates �; and this behavior is also obvious for
the case � = 0, where �̂ overestimates �: there are no values of �̂
around zero, even if � is small, because we have maximized | �̂| with
respect to �cut. Moreover, the sign of �̂ can be estimated wrongly,
even if |�| is large. This is because for data similar in structure to
the one shown in Fig. 1, there is typically a distinct minimum and
also a distinct maximum of �̂(�cut) with similar absolute values; see
also Fig. 3A. This phenomenon was  also described for phase preces-
sion in entorhinal grid cells (Hafting et al., 2008; Reifenstein et al.,
2012).

Finally, Fig. 3C depicts the strong dependence of �̂ on the sam-
ple size n. This behavior of �̂ illustrates that the resulting estimator
is problematic. In Fig. 3C we, again, recognize a bimodal distribu-
tion with positive values of the estimate �̂ even though � = − 0.8 is
negative.

The various problems identified in the approach outlined in
Figs. 1B and 3 with a horizontal cut of the data cylinder might be cir-
cumvented by a diagonal cut, as indicated in Fig. 1C and evaluated
in Fig. 4; this approach might be superior because the unwrapped
cylinder represents the presented data better. However, as we now
show, diagonally cutting the cylinder to estimate a linear–linear
correlation coefficient is even more questionable than cutting hor-
izontally. The main problem arises when we  attempt to fix the two
free parameters of the cutting line, that is, its slope acut and its off-
set �cut, which are similar in nature to the result of a circular–linear

regression itself.

Let us illustrate the problem of fixing acut and �cut for the exam-
ple from Fig. 1C. We  set �cut = 180◦, which is the best choice given
the underlying zero-mean Gaussian model, and then try to find
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Fig. 3. Linear–linear regression after horizontally cutting the data cylinder, as in Fig.
1B. (A) Linear correlation �̂ as a function of the phase �cut at which the cylinder is cut,
for the same surrogate data as in Fig. 1B (n = 300 and � = − 0.8). The upward triangle
indicates the minimum �̂c = −0.34, which is also the maximum of | �̂|. The down-
ward triangle indicates the maximum of �̂; interestingly, the maximum is positive.
(B)  Dependence of the linear correlation coefficient �̂ (blue dots) on the param-
eter  � of the underlying bivariate Gaussian model of the surrogate data (n = 300,
�X = 0.5, �Y = 2). There are no values of �̂ around zero, even if � is small. Note that
the  estimates often have the wrong sign, e.g., the blue dots with � > 0.5 but �̂ < 0. (C)
Dependence of �̂ (blue dots) on the sample size n for � = − 0.8, �X = 0.5, and �Y = 2.
In (A), (B), and (C), dotted lines mark zero correlations. (For interpretation of the
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Fig. 4. Linear–linear regression after diagonally cutting the data cylinder as indi-
cated in Fig. 1C. (A) Estimated linear correlation �̂ as a function of the slope acut,
for  the same fixed offset �cut = 180◦ as in Fig. 1C. Dotted lines mark zero values. (B)
Sample correlation �̂ (color coded) as a function of acut and �cut. There is no distinct
extremum. For (A) and (B), the surrogate data shown in Fig. 1 were used. (For inter-
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

n acut that maximizes | �̂|. The function �̂(acut) is, again, piecewise
onstant and discontinuous (Fig. 4A). Beyond that, however, �̂(acut)
oes not exhibit a clear extremum, not even near the expected value
f −0.51 (from Eq. A.15) of the slope of a regression line. Conversely,
xtrema are reached in the limiting cases acut→ ± ∞ with values
ˆ  → ±1.
To further outline why the approach of diagonally cutting the

ylinder is ill-posed, we vary �cut and acut simultaneously. Fig. 4B
emonstrates that in the plane spanned by acut and �cut there is
pretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

no clear extremum of �̂. This example does not rule out that there
are other data that might give rise to a clear maximum of | �̂| as a
function of acut and �cut. However, without profound prior knowl-
edge on the data we  cannot rule out that the approach is non-well
behaved, as in our example. We  therefore will not elaborate on this
approach in more detail and summarize that the choice of �cut and
acut heavily biases the estimated linear correlation coefficient.

Next we  also want to exclude the feasibility of combinations of
circular–linear regression (defining a line at which the data cylinder
is cut) and a subsequent estimate via a product-moment correlation
coefficient. Let us show the weakness of such a combined approach
for a specific example in which circular and linear variables are
independent and the circular variable is uniformly distributed over
the whole cycle. We  then expect a correlation coefficient at zero,
but the circular–linear regression line can have arbitrary slopes.
Cutting the data cylinder at a slope that is different from zero, how-
ever, gives rise to nonzero linear–linear correlation coefficients. The

larger the slope, the larger is the correlation, which is in opposition
to the expected zero correlation. A zero correlation is, however,
retained when we use the circular–linear correlation �c because
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Fig. 5. Hippocampal phase precession: comparison of linear–linear (blue color)
and  circular–linear (red color) correlation and slope estimates for n = 3097 hip-
pocampal units. (A) Histogram of phase-position correlations. For each CA1 unit
we  calculated the correlation of animal position and theta phase of all spikes.
The  linear–linear approach yields overall stronger correlations, almost no cor-
relation coefficients around zero, and a distinct peak at positive correlations.
The circular–linear approach yields a skewed unimodal distribution with a peak
around −0.5. Bars filled with pale colors indicate non-significant correlation coef-
ficients (p > 0.0001; Pearson’s test is used for linear–linear correlation, the test for
circular–linear correlation is described in Appendix A.2.1). (B) Histogram of slopes
of  the regression line of phase-position data. Pale bars denote slopes that did not
yield a significant correlation coefficient, which often have a slope around zero. The
circular–linear approach yields steeper (more negative) slopes than the linear–linear
approach, in line with results obtained from the surrogate data. (C) Significance (p
value) as a function of correlation coefficient. Note the absence of high p values
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or the linear–linear approach. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

his measure is insensitive to the slope. We  thus conclude that the
trategy with diagonally cutting the cylinder is, in general, inade-
uate.

.3. Quantifying hippocampal phase precession

Hippocampal phase precession describes the association
etween a linear spatial variable and a circular phase variable. For
he quantification of the strength of the association, so far, mostly
ariations of linear–linear approaches were used (Fig. 1B and C).
ere we compare the relation between the linear–linear approach
ith a horizontal cut (Fig. 1B) to our new circular–linear approach

Fig. 1A) for phase precession in n = 3097 hippocampal CA1 units.
The experimental data shown in Fig. 5 exhibits many fea-
ures seen in the surrogate data. For example, the linear–linear
pproach yields stronger correlation coefficients because of the
aximization of the coefficient of variation (Fig. 5A). Furthermore,

he linear–linear approach results in shallower slopes than the
ce Methods 207 (2012) 113– 124

circular–linear approach (Fig. 5B). Most importantly, however, the
circular–linear correlation coefficient much better indicates signif-
icance than the linear–linear coefficient (Fig. 5C); in fact, according
to the linear–linear method, only few trials show insignificant cor-
relation. These results indicate that the estimates of the standard
linear–linear approach can be biased.

A more detailed analysis of the relation between the two
approaches is provided in Fig. 6; in particular, we show scatter plots
of phase-position correlations (top left panel) and slopes (top right
panel). The first bottom row gives phase-position data from eight
representative example units with strong phase precession pooled
over multiple trials.

Apart from cells with strong phase precession, the experimental
data also includes cells without phase precession. Furthermore, in
some units phase precession is visible but not correctly identified
by one or both quantification methods. Example units for these
cases are shown in the bottom row of Fig. 6.

Overall, the two  approaches (circular–linear vs. linear–linear)
clearly lead to different results. For example, Fig. 5A and the top
left panel of Fig. 6 indicate that there are few linear–linear correla-
tion coefficients near zero, which is expected for a maximization of
the square of this coefficient. Moreover, the top left panel of Fig. 6
shows that for a given linear–linear correlation coefficient there is
a wide range of circular–linear ones, even with the opposite sign
(examples c, e, f, g, and h). The absolute values of the circular–linear
coefficients tend to be smaller than those of the linear–linear coeffi-
cients, which is reflected in the triangular distribution of dots. This
effect could also be explained by the maximization of the square of
the linear–linear coefficient (Figs. 2C and 3C).

Also for the estimated slopes in Fig. 5B and in the top right panel
of Fig. 6, we  observe a gap for small values of the linear–linear
slopes. For a given value of the linear–linear slope, Fig. 6 shows
that there is also a large range of circular–linear slopes, but the
absolute values of the former tend to be smaller (see examples in
the top row of Fig. 6 and also c, g, and h in the bottom row). This
effect could be explained by the underestimation of slopes by the
linear–linear method as indicated in Fig. 1B.

An inspection of the phase-position plots of the example neu-
rons in Fig. 6(a–h) reveals that the circular–linear slopes generally
fit the data clouds better than the linear–linear slopes. However,
for few units, the sign of the circular–linear correlation coefficient
is different from that of the corresponding slope (examples b, c,
d, g, and h). This requires a subtle distinction between slope and
coefficient regarding their interpretation. Whereas the coefficient
is, strictly speaking, only a measure of significance, the slope indi-
cates the direction of the phase drift, independently of significance.
For most examples, the sign of correlation coefficient nevertheless
indicates this direction correctly.

To conclude, the linear–linear approach tends to overestimate
the quality of phase precession and underestimate its slope. The
circular–linear approach is better suited for estimating the slope
and is more conservative in estimating the correlation. In both
approaches, problems in the quantification can arise for nonlinear
or bimodal phase precession and for multiple fields.

4. Discussion

We  developed a new measure to quantify circular–linear asso-
ciations. This approach required three parts: first, we fit a linear
regression model to circular–linear data by minimizing the circular
error between measured and predicted angles. Second, the result-

ing slope of the regression line was used to scale the linear variable
and to transform it into an appropriate circular one. Third, this
transformation enabled us to utilize a measure for circular–circular
correlations.
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Fig. 6. Quantification of hippocampal phase precession. Top left,  scatter plot of phase-position correlation coefficients (circular–linear vs. linear–linear with a horizontal
cut)  for n = 3097 CA1 units. The labels a–h refer to examples in the bottom row of the figure. The gray area marks units with strong phase precession, which are pyramidal
neurons that are place cells; examples from that area are shown in the first row below. Top right, scatter plot of slopes (circular–linear vs. linear–linear). Bottom, example
units. In every bottom panel, a black dot corresponds to a spike at a specific theta phase (ordinate, two cycles) and a specific spatial position within the place field (abscissa,
normalized to field width). Regression lines indicate the circular–linear method (red color) as well as the linear–linear method (blue color) with an optimized horizontal cut
of  the cylinder (dashed line), where optimization means maximization of the coefficient of determination. (a–h) Eight specific example units; two of them are without phase
precession (i.e. recession in examples a and b), and six with phase precession that is not correctly identified by at least one quantification method (c–h). The latter six include
cells  that suggest phase precession (negative slope) by visual inspection but yield a positive circular–linear correlation (c, g, and h) or positive linear–linear correlation (e,
f).  This contradiction of the two methods seems to be due to strong bimodal phase distributions (c and g), nonlinear phase precession (g and h), apparent multiple phase
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recession (d, e, and f), and spike phases distributed across the whole cycle (c–g)
xamples can be observed in Figs. 2C and 3C.  (For interpretation of the references t

We  note that this new approach does not require prior knowl-
dge on the data apart from weakly restricting the range of slopes to

 reasonable interval. Altogether, the proposed approach is numer-
cally cheap. Simulations for Gaussian surrogate data indicated that

ean values of sample estimates only weakly depended on sam-
le size, and that the estimates matched expected values also in the

imiting cases of low and high noise, which points to a well-behaved
stimator.

Other common approaches to quantify circular–linear associa-
ions rely on cutting the data cylinder at some line, unwrapping the
ylinder to create another linear variable, and finally using ordinary
east squares regression and a linear–linear correlation coefficient.
esults obtained in this way heavily depend on how the cylinder

s cut. It is therefore necessary to uniquely define the cutting line.
 prominent criterion is to maximize the coefficient of determi-
ation, i.e. the square of the linear–linear correlation coefficient.
or discrete data, this maximization is numerically inconvenient
ecause the coefficient of determination is a piecewise constant
nd discontinuous function of the parameters that define the cut.

Numerical simulations based on Gaussian surrogate data where
he data cylinder was cut horizontally (at some phase) revealed
hree further problems: (i) the slope of the regression line was  typ-
cally underestimated; (ii) the obtained correlation coefficient did
ot represent the data well, with an overestimation for high noise

low correlations) because of the maximization, and an underesti-

ation for low noise (high correlations) because of the cut; (iii) the
istribution of sample estimates of the correlation coefficient was
imodal for low sample sizes, and the most likely values of sample
atter case corresponds to a large �Y in the bivariate Gaussian model, and similar
r in this figure legend, the reader is referred to the web  version of this article.)

estimates strongly depended on the sample size. Thus, estimating
correlation coefficients in this way is not efficient. Alternatively,
cutting the data cylinder in other ways, for example a linear diag-
onal cut, cannot fundamentally solve these problems; conversely,
additional problems arise that are related to fixing the parameters
of the cut. We  conclude that linear–linear approaches applied to
circular–linear data are, in general, not robust.

There may, nevertheless, be circular–linear data for which a
linear–linear approach can lead to acceptable results. Such cases
typically include scenarios in which the circular variable is con-
centrated, that is, circular measurements are restricted to a small
fraction of a cycle. In the limiting case of a highly concentrated
circular variable, the described linear–linear approach with an
appropriate horizontal cut and our new circular–linear approach
are equivalent. Our new circular–linear correlation coefficient is
therefore a natural analog of Pearson’s product-moment correla-
tion coefficient for linear–linear data. On the other hand, if the
circular variable is not concentrated, that is, circular measure-
ments are spread over the whole cycle, linear–linear approaches
that maximize the coefficient of determination fail whereas our
circular–linear approach is nevertheless valid.

As a specific application, we  considered hippocampal phase
precession, which describes the relation between a linear spatial
variable and a circular phase variable. In most previous approaches,

phase precession was quantified through ordinary least squares
regression and Pearson’s product-moment correlation coefficient
(O’Keefe and Recce, 1993; Mehta et al., 2002; Huxter et al., 2003;
Zugaro et al., 2005; Dragoi and Buzsáki, 2006; Ego-Stengel and
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ilson, 2007; Foster and Wilson, 2007; Brun et al., 2008; Cheng
nd Frank, 2008; Hafting et al., 2008; Lenck-Santini and Holmes,
008; Mizuseki et al., 2009, 2012). As shown in this paper, the

inear–linear approach suffers from the basic problems of bias-
ng the estimates of slope, offset, and correlation, with a strong
ependence of estimates on sample size and noise. Therefore, even
hough in different studies the same linear–linear method was
sed, it is difficult to compare results, in particular if the number of
pikes is low and variable, as for example in single trials (Schmidt
t al., 2009; Reifenstein et al., 2010, 2012). The circular–linear
pproach does not suffer from these basic problems, and therefore
t provides more robust estimates.

Our comparison of the circular–linear and the linear–linear
pproaches to quantify hippocampal phase precession for a large
ample of place fields showed that the obtained correlation coeffi-
ients and slopes are different. The differences match the ones seen
n the surrogate data: linear–linear approach yielded larger correla-
ion and smaller slope estimates than the circular–linear approach.
owever, these differences are difficult to interpret because phase
recession is often nonlinear and bimodal. Both approaches cannot
ccount for this.

Another linear–linear approach was proposed by Yamaguchi
t al. (2002),  who estimated parameters of phase precession by fit-
ing multiple Gaussian probability density functions to the data. A
uite different approach to the quantification of phase precession
as described by Maurer et al. (2006):  for interneurons with over-

apping place fields, they identified the slope “through a process
f parametrically rotating the smoothed position by phase density
atrix”, which correctly accounts for the circular nature of phase.
lternatively, to derive the slope, Mizuseki et al. (2009) estimated

he frequency difference between spiking of a neuron and the local
eld potential in theta band.

A circular–linear approach to estimate the slope and offset of
hase precession, as outlined in this article, was employed by
chmidt et al. (2009) and Reifenstein et al. (2012).  In contrast,
uxter et al. (2008) estimated the slope by means of a diagonal
ut of the cylinder, and the cut was defined through maximization
f the coefficient of determination. Similar to our approach, they
ransformed the linear variable into a circular one with a phase
ange of 180◦ and applied a circular–circular correlation measure
�T: “T-linear association”; Fisher and Lee, 1983).

The circular–linear approach where the circular variable  ̊ is
redicted given the linear variable X is fundamentally different
rom a linear–circular approach where X is predicted given ˚. For
he particular class of linear–circular associations in which the data
ollow a sinusoidal model X = x0 + b0 cos (  ̊ − �0) with parameters
0, b0, and �0, Fisher (1995, p. 145) proposed a positive correlation
oefficient called “C-linear association”, which was used by Lenck-
antini and Holmes (2008) and van der Meer and Redish (2011) to
valuate significances and correlations of distance/phase relation-
hips (see also p. 651 of Zar, 1999; Berens, 2009). However, this
inusoidal model of the data might not always be appropriate to
escribe phase precession.

To conclude, we introduced and motivated a new method
o quantify circular–linear associations. The new method can be
pplied to all kinds of circular–linear data, for example in the
uditory system (FitzGerald et al., 2001); in this context an esti-
ate of the circular–linear slope was introduced. In the auditory

ystem, circular (phase) variables naturally occur due to the band-
ass frequency filtering of the basilar membrane, and the linear
ariable “best frequency” reflects the cochleotopic organization
f the auditory pathway (e.g., Yin and Kuwada, 1983). We  have

pplied this method to hippocampal phase precession. A robust
uantification of phase precession is essential to identify its func-
ional role in memory (Robbe and Buzsáki, 2009; Lenck-Santini and
olmes, 2008). In particular, a systematic overestimation of the
ce Methods 207 (2012) 113– 124

phase-position correlation with linear–linear approaches can lead
to a wrong interpretation of the relation between behavioral per-
formance and phase precession in memory tasks. We demonstrated
that the circular–linear approach is better suited to quantify phase
precession than linear–linear ones.
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Appendix A.

Here we provide a detailed motivation of the formalism used
for circular–linear regression and correlation, which was briefly
sketched in Section 3.

A.1. Circular–linear regression

For the regression of a circular dependent variable  ̊ on a linear
independent variable X, an appropriate measure for the distance
between two  angles is necessary. The squared difference between
two angles, as used in ordinary least squares regression, is inap-
propriate: for example, the two  angles 5◦ and 355◦ have a squared
difference of (350◦)2 although they are only 10◦ apart. To avoid such
an overestimation of small circular distances, we utilize a more
natural measure.

A.1.1. Circular distance
We  define the distance d between two  angles  1 and  2 through

d( 1,  2) = 2[1 − cos( 1 −  2)], (A.1)

(Lund, 1999; see also Eq. (1))  which is symmetric with respect to
the interchange of the two angles. This distance measure is nonneg-
ative and has an upper bound of four, i.e. 0 ≤ d ≤ 4. The value d = 0
implies  1 =  2 (mod 2�), and d = 4 implies | 1 −  2| = � (mod 2�).
For small circular differences, | 1 −  2| � 1, a Taylor series expan-
sion of the cosine function leads us to d( 1,  2) ≈ ( 1 −  2)2,
which is the usual Euclidean measure for distances (Lund, 1999;
Jammalamadaka and SenGupta, 2001). To achieve this equivalence
for small differences, the factor 2 appears in Eq. (A.1).

A.1.2. Circular–linear model
We use the circular distance d to fit a circular–linear model to

the data, in analogy to using the Euclidean distance in ordinary least
squares regression. Let us suppose a random sample of observations
(�1, x1), . . .,  (�n, xn), that is, data on the surface of a cylinder where
�j is a circular and xj is a linear measurement for j = 1, . . .,  n. The

data vector can then be denoted as (	�, 	x). We  assume that the data
obeys a linear model of the form

˜̊
 = [2�  a X + � ] (mod 2�). (A.2)
0

The two parameters of this linear model are the slope a and the
phase offset �0 of the regression line. The model allows to predict
the mean angle ˜̊

 for a given X = xj.
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We  fit the linear model in Eq. (A.2) to the measurements (	�, 	x)
y minimizing the mean circular distance, or error, D between
bserved and predicted angles,

(�0, a) = 1
n

n∑
j=1

d(�j, 2� a xj + �0). (A.3)

sing the definition of circular distance in Eq. (A.1), we  find

(�0, a) = 2

⎡
⎣1 − 1

n

n∑
j=1

cos(�j − 2� a xj − �0)

⎤
⎦ , (A.4)

hich is a measure of circular variance of the residual distribution.

.1.2.1. Estimating the phase offset �0. To obtain an esti-
ate �̂0 of the phase offset �0, we first minimize D(�0,

) in Eq. (A.4) with respect to �0 for constant a. From
D(�0, a)/∂�0|

�̂0
= 0 we find

∑
j sin(�j − 2� a xj − �̂0) = 0, which

an be rewritten using the trigonometric addition theorem
in (  ̨ − ˇ) = sin  ̨ cos  ̌ − cos  ̨ sin ˇ. With  ̨ = �j − 2�axj and  ̌ = �̂0
e find (Gould, 1969; Fisher, 1995)

ˆ 0(a) = arctan∗
∑

j sin(�j − 2� a xj)∑
j cos(�j − 2� a xj)

= arg

⎡
⎣ n∑
j=1

exp{i (�j − 2� a xj)}

⎤
⎦ . (A.5)

ere, arctan∗ is the quadrant-specific inverse of the tangent,
lso known as atan2 or four-quadrant arctangent (see also
ammalamadaka and SenGupta, 2001),

rctan∗
(
S

C

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

arctan
(
S

C

)
if C > 0, S ≥ 0,

�

2
if C = 0, S > 0,

arctan
(
S

C

)
+ � if C < 0,

arctan
(
S

C

)
+ 2� if C ≥ 0, S < 0,

undefined if C = 0, S = 0

(A.6)

or S =
∑

j sin (�j − 2� a xj) and C =
∑

j cos (�j − 2� a xj).

.1.2.2. Estimating the slope a. Having found �̂0 as a function of the
lope a in Eq. (A.5), we finally need to obtain the estimate â. We
nd â at the minimum (with respect to a) of D(�0, a) in Eq. (A.4)
ith �0 = �̂0(a),

(�̂0(a), a) = 2

⎡
⎣1 − 1

n

n∑
j=1

cos(�j − 2� a xj − �̂0(a))

⎤
⎦ . (A.7)

o summarize, fitting a linear model  ̊ = 2� a X + �0 (mod 2�) to
ircular–linear data (	�, 	x) requires a one-dimensional (with respect
o the slope a) minimization of the mean circular distance D in Eq.
A.7). The estimate â of the slope is

ˆ  = arg min
a
D(�̂0(a), a), (A.8)

hich normally demands numerical methods. The estimate �̂0 for
he phase offset then follows from Eq. (A.5) with a = â.
.1.3. Mean resultant length R
To put our ansatz for circular–linear regression in a wider con-

ext of circular statistics and to see important properties of the
ean circular distance in Eq. (A.7) that considerably simplify its
case, the mean resultant length of the residual vectors is small. (For interpretation of
the  references to color in this figure legend, the reader is referred to the web version
of  this article.)

calculation, we show how the mean circular distance is related to
the so-called “mean resultant length” or “vector strength”. For a
set of circular observations 	  = ( 1, . . . ,  n), each angle  j can
be represented by a complex unit vector exp (i  j). The normal-
ized sum n−1

∑n
j=1 exp(i  j) is the circular mean vector. It has the

real component C = n−1
∑n

j=1 cos  j and the imaginary component

S = n−1
∑n

j=1 sin  j . The length of the circular mean vector is called
the mean resultant length

R( 	 ) =
√
C2 + S2, (A.9)

and the angle of the circular mean vector, called circular mean
angle, is defined as

 = arctan∗
(
S

C

)
. (A.10)

Eq. (A.10) is analogous to Eq. (A.5), that is, for 	 = 	� − 2�a	x the
circular mean angle is   = �̂0(a). Knowing this relation, we can
transform the sum in Eq. (A.7) as follows (Jammalamadaka and
SenGupta, 2001):

1
n

n∑
j=1

cos( j −  ) = 1
n

n∑
j=1

(cos  j cos   + sin  j sin  )

= C cos   + S sin   = R cos2  + R sin2  = R.

(A.11)

In the first line of Eq. (A.11) we have used a trigonometric addition
theorem, and in the second line we  have utilized the identities C =
R cos   and S = R sin  , which follow from Eqs. (A.9) and (A.10).  The
mean circular distance in Eq. (A.7) can then be rewritten as

D(�̂0(a), a) = 2[1 − R(	� − 2� a 	x)]. (A.12)

Therefore, minimizing D(�̂0(a), a) for circular–linear regression is
equivalent to maximizing the mean resultant length R(	� − 2� a 	x),
which is defined in Eq. (1); see also Fig. 7. We  note that R(	� −
2� a 	x)  = R(	� − 2� a 	x −  �0) for arbitrary phase shifts �0 because
the length of a circular mean vector does not depend on its direc-
tion. Therefore the slope in Eq. (A.8) can be estimated without
knowledge about the phase offset.

It is important to note that the estimate â according to Eq. (A.8) is
not unique for a given data set. In fact, there can be infinitely many

solutions. Such solutions correspond to “barber’s pole” regression
functions that spiral many times around the surface of a cylin-
der (Gould, 1969; Fisher and Lee, 1992; Fisher, 1995; Downs and
Mardia, 2002). As a specific example, we consider the case of
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quidistant linear measurements, that is, xj = j	 with 	 > 0. From
q. (A.12) we then find that R is periodic in a with period 1/	.  To
btain an unique slope â, one needs to restrict the range of possible
lopes, for example to an interval [amin, amax], through some prior
nowledge on the data.

.1.4. Further remarks
In this section we present two remarks and one example to

iscuss the results obtained so far.

(i) Fitting a linear model to circular–linear data through min-
imizing the mean circular distance is equivalent to a
maximum-likelihood approach when we assume that the data
(	�, 	x) is a set of independent observations with angles �j drawn
from a von Mises distribution with a mean direction given
by the linear model 2� a xj + �0 (Gould, 1969); see also Fisher
(1995) and Jammalamadaka and SenGupta (2001).

ii) Having found an approach to circular–linear regression, how
can we quantify the degree of association between the circular
variable  ̊ and the linear variable X? One possibility is to use the
maximum of the mean resultant length R̂ = max

a
R(	� − 2� a 	x)

from Eq. (A.12),  which has some convenient properties. For
example, R̂ is invariant with respect to shifts in  ̊ or X because
the length of a circular mean vector is independent of its direc-
tion. R̂ is also invariant to scaling of X because the scale factor
a is optimized. Values of R̂ are restricted to the interval [0, 1],
and the larger the value, the higher is the correlation between

 ̊ and X.

Although R̂ has convenient properties, there is, however, a
strong argument against using R̂ as a measure for the degree
of association. Importantly,  ̊ and X being independent does
not imply R̂ = 0, even in expectation. To see this property, we
define the corresponding measure R for random variates  ̊ and
X:

R(  ̊ − 2� a X) =
√
E[cos(  ̊ − 2�aX)]2 + E[sin(  ̊ − 2�aX)]2

(A.13)

with E[·] denoting the expectation value. Let us calculate R for
a specific example.

.1.4.1. Example: wrapped bivariate Gaussian distribution. As a spe-
ific example, we utilize the bivariate Gaussian distribution of two
inear variates X and Y, where Y is wrapped around the circle so that

e obtain a circular variate  ̊ = Y (mod 2�). The bivariate Gaussian
istribution is characterized by the mean vectors �X and �Y, the
ariances �2

X > 0 and �2
Y > 0, and the correlation �; the expected

ean resultant length R as defined in Eq. (A.13) is, following Fisher
nd Lee (1983),

(  ̊ − 2�aX) = exp

[
− (2�a�X )2

2
+ �(2�a�X )�Y − �2

Y

2

]
(A.14)

hich assumes its maximum at

 = � �Y
2� �X

(A.15)

ith a maximum value max
a

R = exp[−�2
Y (1 − �2)/2]. Because

ax
a

R > 0 even for � = 0 and because max
a

R increases with decreas-
ng �Y, the mean resultant length is not suited for quantifying
ircular–linear associations. In the next section, we  therefore
evelop a more appropriate measure, which is nevertheless based
n circular–linear regression.
ce Methods 207 (2012) 113– 124

A.2. Circular–linear correlation

The goal of this section is to motivate and introduce a natural
measure for the association between a circular variable  ̊ and a lin-
ear variable X. This measure should ideally share as many properties
as possible with the Pearson product-moment correlation coeffi-
cient for two linear variables, and become identical to it in some
limiting cases. Such a measure for quantifying a circular–linear
association is not yet available. What is available, on the other hand,
are measures for associations between two circular variables ˚
and 
 (Fisher and Lee, 1983; Jammalamadaka and Sarma, 1988;
Fisher, 1995; Jammalamadaka and SenGupta, 2001). Let us now
introduce a particular measure for circular–circular associations
and then show how it can be adapted to quantify circular–linear
associations.

A.2.1. Circular–circular correlation measure �c

For two circular random variates  ̊ and 
 with a joint distribu-
tion on the surface of a torus, Jammalamadaka and Sarma (1988)
define as a measure for a circular correlation coefficient

�c(˚, 
)  = E[sin(  ̊ − ˚) sin(
 − 
)]√
Var[sin(  ̊ − ˚)] Var[sin(
  − 
)]

(A.16)

with the expectation value E[·], the expected variance Var[·], and
the expected circular mean directions  ̊ and 
 of the variates. The
measure �c has the following six properties (Jammalamadaka and
SenGupta, 2001):

(i) −1 ≤ �c ≤ 1
(ii) �c = ± 1 if and only if  ̊ = ± 
 + �0 with a constant angle �0
iii) �c is invariant under choice of origin for  ̊ and 


(iv) �c(˚, 
)  = �c(
,  ˚)
(v) �c = 0 if  ̊ and 
 are independent; the converse need not be

true!
(vi) If the distributions of  ̊ and 
 are concentrated in a small

neighborhood of their respective mean directions, we  have
�c(˚, 
)  ≈ �(˚, 
),  where � is the ordinary correlation coeffi-
cient for two linear variables.

In summary, �c is a natural analog of the Pearson product-moment
correlation coefficient �. However in contrast to Pearson’s �, the
circular–circular correlation �c is in general not invariant with
respect to scaling of  ̊ or 
.

For random circular–circular data (	�, 	�)  = [(�1, �1), . . .,  (�n, �n)],
an estimate of �c is given by the sample correlation coefficient

�̂c(	�, 	�) =
∑n

i=1 sin(�i − �) sin(�i − �)√∑n
i=1sin2(�i − �)

∑n
j=1sin2(�j − �)

(A.17)

where � and � are sample mean values; see also Eq. (3).
For testing hypotheses about �c and to calculate p-values

when n is sufficiently large, we note that under the null

hypothesis �c = 0 the quantity z:= �̂c
√
n �̂20 �̂02/�̂22 is nor-

mally distributed, where �̂ij = n−1
∑n

k=1sini(�k − �) sinj(�k − �)
(Jammalamadaka and SenGupta, 2001). The significance value p
can therefore be obtained from the cumulative normal distribution:
p = 1 − erf(|z|/

√
2)]. To numerically calculate circular–circular cor-

relations and significances, we  used the implementation by Berens
(2009).

If the sample mean values � and � are not well defined because

 ̊ or 
 have uniform distributions, it is more robust to replace the

numerator of Eq. (A.17) by the expression R(	� − 	�) − R(	� + 	�) with
R as defined in Eq. (A.9); for details we refer to Jammalamadaka and
SenGupta (2001).  We  note that for small sample sizes (n � 10) Eq.
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A.17) in rare cases yields values slightly outside the range from −1
o +1.

.2.1.1. Example: wrapped bivariate Gaussian distribution. To illus-
rate properties of �c for an example case, we again use the bivariate
aussian distribution, which is characterized by the variances �2

X >
 and �2

Y > 0 as well as the correlation � of two linear variates X and
. We  assume that X and Y are wrapped around the circle to obtain
wo circular variates 
 = X (mod 2�) and  ̊ = Y (mod 2�). Then 

nd  ̊ have a wrapped bivariate Gaussian distribution, and we  find
rom Eq. (A.16) (Johnson and Wehrly, 1977; Jammalamadaka and
enGupta, 2001)

c(˚, 
) = sinh(� �X�Y )√
sinh(�2

X ) sinh(�2
Y )
.  (A.18)

or �X � 1 and �Y � 1, the correlation �c in Eq. (A.18) is well approx-
mated by the linear correlation �; see also property (vi) above. For
rbitrary �X and �Y, note that even if X and Y are perfectly corre-
ated in the linear sense, that is, � = ± 1, it does not follow �c = ± 1
nless �X = �Y; see also property (ii) above.

To develop an appropriate measure for circular–linear corre-
ations, we aim at retaining the important property that � = ± 1
mplies �c = ± 1. We  therefore need to scale X before wrapping. This
pproach of appropriately scaling X before wrapping is used in what
ollows.

.2.2. Transforming the linear variable into a circular one
Measures for circular–circular associations typically require

hat the data follow a model of the form  ̊ = ± 
 + �0, that is, the
lope is restricted to values of +1 or −1 but the phase offset �0
an be arbitrary; see property (ii) above. To generate appropriate
ircular–circular variables  ̊ and 
 from circular–linear variables

 and X, we utilize results from the section on circular–linear
egression, which provide us with the slope a of the linear regres-
ion line of  ̊ on X. Scaling the linear variable X by the factor

 � |a| and taking the result modulo 2�, we obtain the circular vari-
ble 
 = 2� |a| X (mod 2�). The two circular variables  ̊ and 
 are
hen distributed according to the model ˚ = ± 
 + �0 with slope
1 for a > 0 and slope −1 for a < 0, as needed for using a mea-
ure for quantifying circular–circular associations. For a = 0 we take
c = 0. The degree of association between  ̊ and X can therefore
e quantified through the degree of association between  ̊ and

 = 2� |a| X (mod 2�).

.2.2.1. Example: wrapped bivariate Gaussian distribution. For a
rapped, and scaled, bivariate Gaussian distribution with circu-

ar variates 
 = 2� |a| X (mod 2�) with a slope parameter a and
 = Y (mod 2�) we find from Eq. (A.18)

c(˚, 
) = sinh(� 2� |a| �X�Y )√
sinh([2� |a| �X ]2) sinh(�2

Y )
(A.19)

or a /= 0 and �c(˚, 
)  = 0 for a = 0. Again, for small �X and �Y, �c in
q. (A.19) is well approximated by the linear correlation � – inde-
endent of the value of a. If X and Y are perfectly correlated in the

inear sense, that is, � = ± 1, we find �c = ± 1 only if 2� |a| �X = �Y.
his fact indicates, again, that we must know the slope a to obtain,
rom the measure �c, a reasonable value for the association between
 and X.
A special value for a can be found by maximizing the expected

ean resultant length R in Eq. (A.13).  For the wrapped bivariate
aussian distribution, R is given in Eq. (A.14),  and a = � �Y/(2� �X)
ce Methods 207 (2012) 113– 124 123

from Eq. (A.15) was shown to maximize R. Plugging this slope in
the correlation �c in Eq. (A.19) we  obtain the expected correlation

�c = sgn(�)

√
sinh(�2 �2

Y )

sinh(�2
Y )

(A.20)

which is plotted in Fig. 2B for �Y = 1, 2, and 3.
We have argued that the correlation coefficient �c for two cir-

cular random variates  ̊ and 
 shares many basic properties with
the usual product-moment correlation coefficient, but �c is not
invariant to scaling of  ̊ or 
.  However, for circular–linear variates

 ̊ and X, and for 
 = 2� |a| X (mod 2�) where a is obtained from
circular–linear regression, �c is independent of the scale at which
X is measured because a normalizes X. Accordingly, Eq. (A.20) is
independent of �X. Still, �c is not invariant to scaling of the phase
˚.
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